基于尺度自适应光谱字典学习的高光谱图像去噪方法
DOI:
CSTR:
作者:
作者单位:

北京市遥感信息研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Hyperspectral denoising method based on scale adaptive spectral dictionary learning
Author:
Affiliation:

1.Beijing Remote Sensing Information Research Institute,Beijing,100011;2.China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱遥感成像过程中,由于受到探测器噪声、光学系统噪声、环境噪声以及统计噪声等各类噪声影响,图像质量往往会出现退化,进而影响后续应用中的信息提取精度及可信度。特别是红外谱段,由于探测器材料本身热振动等因素,受热噪声影响显著。针对这一问题,提出了一种基于尺度自适应光谱字典学习的高光谱去噪方法。首先,将尺度约束引入字典学习过程中,以自适应待降噪图像获取不同尺度光谱字典。其次,将图像空间域信息作为编码先验知识,应用全变分—变量分解和增广拉格朗日稀疏回归方法对图像进行稀疏编码求解。最后,利用光谱字典与稀疏编码进行重构获得去噪后的高光谱图像。实验结果表明,相对比现有高光谱去噪算法,所提出的算法在模拟数据集及真实数据集上均能取得更好效果。

    Abstract:

    During the imaging process of hyperspectral remote sensing images, the quality of the images often deteriorates due to various types of noise such as detector noise, optical system noise, environmental noise, and statistical noise, which in turn affects the accuracy and credibility of information extraction in subsequent applications. Especially in the infrared spectral band, due to factors such as the thermal vibration of the detector material itself, it is significantly affected by thermal noise. To address this issue, this paper proposes a hyperspectral denoising method based on scale-adaptive spectral dictionary learning. Firstly, an adaptive scale constraint is introduced into the dictionary learning process to obtain the spectral dictionary of the image to be denoised. Secondly, the spatial domain information of the image is utilized as prior knowledge for encoding, and the total variation-variational decomposition and augmented Lagrangian sparse regression methods are applied to solve the sparse coding of the image. Finally, the denoised hyperspectral image is reconstructed using the spectral dictionary and sparse coding. Experimental results demonstrate that, compared to existing hyperspectral denoising algorithms, the proposed method achieves superior performance on both simulated and real datasets.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-26
  • 最后修改日期:2025-11-28
  • 录用日期:2025-12-23
  • 在线发布日期:
  • 出版日期:
文章二维码