摘要
稀Bi半导体InPBi的光致发光(Photoluminescence, PL)主要来自缺陷能级跃迁过程,具有红外长波长、大线宽和高辐射强度等特点,因而引发广泛兴趣。针对InPBi的红外发光效率问题,本文研究了不同Bi组分InPBi的激发功率依赖红外PL光谱演化规律。实验发现,随着Bi组分增大,PL线型发生显著变化,导致发光波长总体红移;同时激发功率依赖的PL积分强度演化分析表明,发光效率随Bi组分先增大然后下降,在0.5%组分时发光效率达到峰值。发光效率增大一方面归因于Bi捕获空穴降低非辐射复合,另一方面来自Bi的表面活性剂效应;而高Bi组分引入过多缺陷从而抑制了Bi的优势,导致发光效率下降。这些结果或有助于理解InPBi的红外发射性能,表明InPBi具有红外光电子应用前景。
III–V族稀铋(Bismuth, Bi)半导体因其在红外激光二极管、发光二极管和光电探测器等光电应用方面的潜力而备受关
光致发光(Photoluminescence,PL)光谱是研究半导体辐射光特性和规律的经典手段,具有非破坏、高灵敏等优
采用V90气态源分子束外延设备在半绝缘InP(001)晶面衬底上生长InP1-xBix材

图1 (a) 不同Bi浓度InPBi的77 K-PL光谱及其线型拟合,(b)和(c)Bi组分依赖的PL特征峰能量和积分强度
Fig. 1 (a) PL spectra of InPBi with different Bi compositions at 77 K, (b) and (c) the Bi composition-dependent PL energy and integral intensity, respectively
为此开展了激发功率依赖的InP1-xBix PL光谱测试。代表性InPBi样品的变激发功率PL光谱如

图2 代表性InP1-xBix (x=0.3%、0.5%和1.7%)的激发功率依赖PL谱,所有光谱做归一化处理,箭头线示意特征峰随激发功率的演变
Fig. 2 Excitation power-dependent PL spectra of the representative InP1-xBix (x=0.3%, 0.5% and 1.7%), spectra are normalized, the arrow line is the guide for the PL energy evolution with excitation power
同时,PL特征能量随着激发功率的增大而微弱蓝移。
x (%) | α | β | γ |
---|---|---|---|
ΔE (meV) | |||
0.05 | 5 | 14 | |
0.1 | 2 | 17 | |
0.3 | 4 | 6 | |
0.5 | 4 | ||
1.0 | 5 | ||
1.35 | 3 | ||
1.7 | 11 | 9 | |
2.0 | 10 | 7 | |
2.4 | 7 | 5 |
为进一步澄清InPBi红外PL性质,下面分析InPBi共有特征β的激发功率依赖辐射复合特性演化,以便理解禁带下PL效率与Bi组分的关系。
, | (1) |
其中,a为与发光类型相关的参数。基于该公式,对特征β的积分强度进行拟合,结果表明,对不同Bi组分,,说明在10~200 mW功率范围内,积分强度随功率的演化呈现线性关系。

图3 (a)不同组分InPBi特征β的积分强度与激发功率关系,(b)积分强度-功率演化斜率与Bi组分的关系
Fig. 3 (a) The integral intensity of PL feature β versus the excitation power for InPBi with various Bi compositions, (b) slopes derived versus Bi composition
定义PL的辐射总光子数与材料吸收泵浦光子数的比值为PL效率,表示材料将短波光子转化为长波光子的能力。假设在本实验范围,InPBi对泵浦激光的吸收效率和PL测量系统传递函数不依赖于Bi组分和光谱范围,则PL效率正比于。由于特征β积分强度的线性关系,PL效率不随激发功率变化而变化,意味着俄歇复合效应可忽略不
斜率与Bi组分的关系如
对不同Bi组分InPBi开展了激发功率依赖的PL光谱研究,结果表明:InPBi禁带下PL线型与Bi组分密切关联。对其中PL特征β,Bi组分增大导致辐射波长红移;同时PL效率随Bi组分增加先增大后减小,在组分为0.5%时达到峰值。Bi致PL效率增大可归因于Bi的空穴捕获降低非辐射复合能力和Bi表面活性剂效应。过高的Bi组分导致材料的缺陷显著增大,从而非辐射复合占据主导地位,PL效率下降。这一结果有望为InPBi的发光性能优化提供帮助。
致谢
作者感谢瑞典查尔姆斯理工大学王庶民教授为本工作提供样品。
References
Alberi K, Wu J, Walukiewicz W, et al. Valence band anticrossing in mismatched III-V semiconductor alloys[J]. Phys. Rev. B, 2007, 75: 045203–045208. [百度学术]
Francoeur S, Seong M J, Mascarenhas A, et al. Band gap of GaAs1-xBix, 0<x<3.6%[J]. Applied Physics Letters, 2003, 82(22):3874-3876. [百度学术]
Rajpalke M K, Linhart W M, Yu K M, et al. Bi flux-dependent MBE growth of GaSbBi alloys[J]. Journal of Crystal Growth, 2015, 425: 241-244. [百度学术]
Ma K Y, Fang Z M, Jaw D H, et al. Organometallic vapor phase epitaxial growth and characterization of InAsBi and InAsSbBi[J]. Applied Physics Letters, 1989, 55(23):2420-2422. [百度学术]
Kopaczek J, Kudrawiec R, Polak M P, et al. Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x ≤ 0.034[J]. Appl. Phys. Lett., 2014, 105(22): 222104. [百度学术]
Wu X, Chen X, Pan W, et al. Anomalous photoluminescence in InP1-xBix[J]. Scientific Reports, 2016, 6:27867. [百度学术]
K Wang, Y Gu, H F. Zhou,et al. InPBi Single Crystals Grown by Molecular Beam Epitaxy. Sci. Rep. 2014, 4, 5449. [百度学术]
Bhowal M K, Das S, Sharma A S, et al. Anomalous increase of sub-band gap photoluminescence from InPBi layers grown by liquid phase epitaxy[J]. Materials Research Express, 2019, 085902. [百度学术]
Gandouzi F. Hedhili F, Rekik N. A density functional theory investigation of the structural and optoelectronic properties of InP1-xBix alloys[J]. Computational Materials Science, 2018, 149:307-315. [百度学术]
L. Y. Wu, P. F. Lu, C. H. Yang, et al. The effect of BiIn hetero-antisite defects in In1–xPBix alloy[J]. Journal of Alloys & Compounds, 2016, 674: 21–25. [百度学术]
Shao J, Lu W, Lu X, et al. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer[J]. Review of Scientific Instruments, 2006, 77(6):063104. [百度学术]
Yan B, Chen X, Zhu L, et al. Bismuth-induced band-tail states in GaAsBi probed by photoluminescence[J]. Applied Physics Letters, 2019, 114(5):052104. [百度学术]
Dou C, Chen X, Chen Q, et al. Photoluminescence Evolution with Deposition Thickness of Ge Nanostructures Embedded in GaSb[J]. Physica status solidi, B. Basic solid state physics, 2022(4):259. [百度学术]
Chen X, Zhu L, Zhang Y, et al. Modulated Photoluminescence Mapping of Long-Wavelength Infrared InAs/GaSb Type-II Superlattice: In-Plane Optoelectronic Uniformity[J]. Physical Review Applied, 2021, 15(4): 044007. [百度学术]
Chen X R, Wu X Y, Yue L, et al. Negative Thermal Quenching of Below-bandgap Photoluminescence in InPBi[J]. Appl. Phys. Lett. 2017, 110 (5): 051903. [百度学术]
Pan W, Wang P, Wu X, et al. Growth and material properties of InPBi thin films using gas source molecular beam epitaxy[J]. Journal of Alloys and Compounds, 2016, 656:777-783. [百度学术]
Shao J, Lu X, Yue F, et al. Magnetophotoluminescence study of GaxIn1-xP quantum wells with CuPt-type long-range ordering[J]. Journal of Applied Physics, 2006, 100(5):1399. [百度学术]
Shao J, Lu C, Wei L, et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs[J]. Applied Physics Letters, 2010, 96(12):091101. [百度学术]
Shao J, Lu W, Tsen G, et al. Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice[J]. Journal of Applied Physics, 2012, 112(6):663. [百度学术]
Shao J, Qi Z, Zhao H, et al. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells[J]. Journal of Applied Physics, 2015, 23(16):165327. [百度学术]
Dreszer, Chen, Seendripu, et al. Weber, Phosphorus antisite defects in low-temperature InP[J]. Physical Review B, Condensed matter, 1993, 47 (7): 4111-4114. [百度学术]
Łukasz Gelczuk, Stokowski H, Kopaczek J, et al. Bi-induced acceptor level responsible for partial compensation of native free electron density in InP1-xBix dilute bismide alloys[J]. Journal of Physics D Applied Physics, 2016, 49(11):115107. [百度学术]
Lu X, Beaton D A, Lewis R B, et al. Composition dependence of photoluminescence of GaAs1-xBix alloys[J]. Applied Physics Letters, 2009, 95(4):2245. [百度学术]
Chen X R, Alradhi H, Jin Z M, et al. Mid-infrared Photoluminescence Revealing Internal Quantum Efficiency Enhancement of Type-I and Type-II InAs Core/shell Nanowires[J]. Optics Letters, 2022, 47 (19): 5208-5211. [百度学术]
Chichibu S F, Uedono A, Onuma T. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors[J]. Nature Materials, 2006, 5(10):810-6. [百度学术]
Pillai M R, Kim S S, Ho S T, et al. Growth of InxGa1-xAs/GaAs Heterostructures Using Bi as a Surfactant[J]. Journal of Vacuum Science & Technology B, 2000, 18 (3): 1232-1236. [百度学术]