摘要
采用55 nm CMOS工艺,设计了一款应用于毫米波成像系统的94 GHz低噪声放大器(LNA)。提出一种双耦合等效跨导增强技术,在提高增益的同时,实现良好的宽带输入匹配。使用中和电容技术和共栅管栅端短接技术,进一步提高增益,并保证放大器的高频稳定性。芯片测试结果表明,LNA的小信号增益最大值达到14.2 dB,3 dB带宽为87.1~95 GHz,噪声系数为6.7 dB,输入1 dB压缩点为-13 dBm。
关键词
近年来,随着CMOS工艺的快速发展,以及对低成本、高精度雷达系统的迫切需求,CMOS毫米波雷达技术受到广泛关
提出了一种基于片上集成变压器的双耦合等效跨导增强技术,结合中和电容技术和共栅管栅端短接技术提高放大器增益和电路稳定性。芯片测试结果表明,小信号增益最大值达到14.2 dB,3 dB带宽为87.1~95 GHz,噪声系数为6.7 dB,输入1 dB压缩点为-13 dBm。文中第一部分介绍了电路设计细节,第二部分给出了芯片测试结果,最后给出了电路性能总结及其与近年来已发表文献的比较。

图1 LNA原理图及无源器件3D图
Fig. 1 The schematic of LNA and the 3D-view of passive devices

图2 (a)双耦合等效跨导增强技术共源电路原理图;(b)输入巴伦等效;(c)传统源级退化电感电路半边等效电路;(d)双耦合等效跨导增强共源电路半边等效电路
Fig. 2 (a) The schematic of the dual-coupling gm-boosting technique; (b)the equivalent of the balun; (c) the equivalent half-circuit model of conventional source inductive degeneration; and (d) the equivalent half-circuit model of the dual-coupling gm-boosting technique
, | (1) |
等效跨导Gm为:
, | (2) |
对于采用双耦合等效跨导增强技术的电路,当工作在谐振频率:
, | (3) |
等效跨导Gm为:
. | (4) |
与传统源级退化电感技术相比,双耦合等效跨导增强技术可以在不引入额外功耗的条件下提高跨导。

图3 采用传统源级退化电感技术的电路和采用双耦合等效跨导增强技术的电路Gmax性能比较
Fig. 3 Comparison of simulated Gmax for circuits which use the traditional source inductive degeneration (TSID) method and the dual-coupling gm-boosting (DCGB) technique
对于共源电路,栅漏电容Cgd会引起稳定性问题和增益降低。为提高电路差分稳定性和增益,电路采用了中和电容技术,如

图4 中和电容原理图及其小信号等效电路图
Fig. 4 (a) The schematic of the capacitive neutralization and (b) its small signal equivalent model

图5 在90 GHz时,Gmax、Kf关于中和电容Cp的变化曲线Fig. 5 The simulated Gmax, Kf versus Cp at 90 GHz
为获得高增益、高稳定性和高隔离度,第三级电路采用共栅管栅端短接技术,如
. | (5) |

图6 共栅管栅端短接技术(a)原理图,(b)半边等效小信号电路图
Fig. 6 (a)The schematic and (b) its equivalent circuit of the common-gate-shorting technique
对于采用栅端短接技术的共源共栅电路,输出电流
. | (6) |
由于虚地的存在,输出电流Iout显著提高。

图7 传统共源共栅电路和采用共栅管栅端短接技术的共源共栅电路(a) MSG和 (b) NFmin性能比较
Fig. 7 (a) Maximum stable power gain and (b) NFmin of cascode circuit with and without common-gate-shorting technique
本文所设计的LNA芯片采用Fujitsu 55-nm CMOS工艺制造,

图8 LNA芯片照片
Fig. 8 Chip photograph of the fabricated LNA

图9 小信号S参数测试结果
Fig. 9 The measured S-parameters

图10 稳定性因子Kf以及噪声系数NF测试结果
Fig. 10 The measured K factor and the measured noise figure

图11 90 GHz时增益和输出功率测试结果
Fig. 11 The measured Gain, output power at 90 GHz
#表示从图中读出数据,^表示为核心版图面积
提出了一种双耦合等效跨导增强技术,采用此技术,基于55-nm CMOS工艺设计了一款应用于94 GHz毫米波成像系统的高性能低噪声放大器,实现的小信号增益最大值为14.2 dB,3 dB带宽为87.1~95 GHz,噪声系数为6.7 dB,输入1 dB压缩点为-13 dBm,芯片面积为832×186 µ
References
Severino R R, Taris T, Deval Y, et al. A SiGe:C BiCMOS LNA for 94GHz band applications, Bipolar/bicmos Circuits & Technology Meeting, 2010 [C]. Austin, TX, IEEE, 2010: 188-191. [百度学术]
Goshi D S, Liu Y, Mai K, et al. Recent advances in 94 GHz FMCW imaging radar development, IEEE MTT-S International Microwave Symposium Digest, 2009 [C]. Boston, MA, IEEE, 2009:77-80. [百度学术]
Lin Y S, Lee G L, Wang C C, et al. A 21.1 mW 6.2 dB NF 77∼81 GHz CMOS low-noise amplifier with 13.5±0.5 dB S21 and excellent input and output matching for automotive radars, Radio and Wireless Symposium (RWS), 2014 [C]. Newport Beach, CA, 2014: 73-75. [百度学术]
Cetinoneri B, Atesal Y A, Fung A, et al. W Band Amplifiers With 6dB Noise Figure and Milliwatt-Level 170–200GHz Doublers in 45-nm CMOS [J]. IEEE Trans-actions on Microwave Theory & Techniques, 2012, 60(3):692-701. [百度学术]
Lardizabal S, Hwang K C, Kotce J, et al. Wideband W-band GAN LNA MMIC with state-of-the-art noise figure, Compound Semiconductor Integrated Circuit Symposium (CSICS), 2016 [C]. Austin, TX, IEEE, 2016: 1-4. [百度学术]
Jiang C S, Zhang R X, Shi C Q, A 24-28 GHz high stability CMOS power amplifier using common-gate-shorting (CGS) technique with 17.5 dBm Psat and 16.3% PAE for 5G millimeter-wave applications [J]. Analog Integrated Circuits and Signal Processing, 2019, 98(1): 193-200. [百度学术]
Shao W P, Jyun J H, Hong Y C, et al. A 76–98 GHz Broadband Low-DC-Power Low Noise Amplifier Using Coplanar Waveguide in 40 NM CMOS Process, Asia-Pacific Microwave Conference (APMC), 2018 [C]. Kyoto, IEEE, 2018: 663-665. [百度学术]