A self-calibration method of the boresight angles of airborne hyperspectral VNIR/SWIR modules
Author:
Affiliation:

1.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;2.University of Chinese Academy of Sciences, Beijing 100049, China

Clc Number:

TP391.41

Fund Project:

Supported by the National Civil Aerospace Project of China (D040102)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    External field-of-view (FOV) stitching is an effective way to achieve an airborne hyperspectral imaging system with both a large field-of-view and a wide spectral sampling range. However, due to the independent installation of each module, the boresight angles between the corresponding VNIR module and SWIR module will change after a long period of equipment operation, and the change of boresight angles will negatively affect the data fusion effect. The overlap of FOV makes the calibration method based on the epipolar geometry and homography constraints ineffective in solving the boresight angles between the corresponding VNIR/SWIR modules. In this paper, an algorithm based on the reprojection error is proposed for an airborne hyperspectral imaging system with external field-of-view stitching to achieve self-calibration of the boresight angles and focal length between the VNIR/SWIR backends. The algorithm has been applied to the Airborne Multi-Modality Imaging Spectrometer (AMMIS). Experimental results show that the average error of the method is less than 0.2 pixels, and it is also well adapted to tilt-placed modules.

    Reference
    Related
    Cited by
Get Citation

GUO Ran, WANG Yue-Ming. A self-calibration method of the boresight angles of airborne hyperspectral VNIR/SWIR modules[J]. Journal of Infrared and Millimeter Waves,2023,42(6):851~862

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 16,2023
  • Revised:November 02,2023
  • Adopted:March 20,2023
  • Online: October 24,2023
  • Published: