Progress in the study of nonlinear dynamic characteristics based on quantum cascade lasers
CSTR:
Author:
Affiliation:

1.School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;2.National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;3.Center of Material Science and Optoelectronic Engineering,University of Chinese Academy of Sciences, Beijing 100049, China

Clc Number:

O43

Fund Project:

Supported by the National Natural Science Foundation of China (12333012, 61927813, 61975225) ; Science and Technology Commission of Shanghai Municipal (21DZ1101102)

  • Article
  • | |
  • Metrics
  • |
  • Reference [56]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Quantum Cascade Laser (QCL) is a unipolar semiconductor laser that relies on the excitation of photons radiated by electrons leaping between subbands of quantum wells. Numerous theoretical and experimental studies have demonstrated that slight external perturbations (optical feedback, optical injection) or sufficiently strong internal nonlinear mode couplings can induce nonlinear output of semiconductor lasers. QCL, as a new type of semiconductor device, is characterized by high intracavity strength, strong inter-subband optical nonlinearity and fast electron relaxation time, which has stimulated the interest in studying its nonlinear dynamics. In this paper, we review in detail the progress of the study of nonlinear dynamical characterization in QCL, explore the mechanism of the generation of nonlinear dynamical properties of QCL, and summarize the applications of nonlinear properties of QCL.

    Reference
    [1] Rhodes W T. Smiconductor laser[M]. Springer Series in Optical Sciences, 2007.
    [2] SUN Qi, XU Jian. On the development history of nonlinear dynamics[C]. Proceedings of the Third National Symposium on the History and Methodology of Mechanics. Chinese Society of Mechanics. 2007:183-188.孙琪,徐鉴. 浅谈非线性动力学的发展史[C]. 第三届全国力学史与方法论学术研讨会论文集.中国力学学会, 2007:183-188.
    [3] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature photonics, 2015, 9(3): 151-162.
    [4] Kohler R, Tredicucci A, Beltram F, et al. THz Quantum Cascade Laser[C]. IEEE Tenth International Conference on Terahertz Electronics.UK, 2002:1-6.
    [5] Capasso F, Paiella R, Martini R, et al. Quantum cascade lasers: Ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission[J]. IEEE Journal of Quantum Electronics, 2002, 38(6):511-532.
    [6] Zhou W, Lu Q Y, Wu D H, et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 m[J]. Optics Express, 2019, 27(11):15776-15785.
    [7] Lu Q Y, Razeghi M, Slivken S, et al. High power frequency comb based on mid-infrared quantum cascade laser at λ~9μm[J]. Applied physics letters, 2015,106,051105.
    [8] Razeghi M, Zhou W, Slivken S, et al. Recent progress of quantum cascade laser research from 3 to 12μm at the Center for Quantum Devices[J]. Applied Optics, 2017, 56(31):H30-H44.
    [9] Mezzapesa F P, Columbo L L, Brambilla M, et al. Intrinsic stability of quantum cascade lasers against optical feedback[J]. Optics Express, 2013, 21(11):13748-13757.
    [10] Porte X, Brunner D, Fischer I, et al. Nonlinear Dynamics of a Single-Mode Semiconductor Laser with Long Delayed Optical Feedback: A Modern Experimental Characterization Approach[C]//Photonics. MDPI, 2022, 9(1): 47.
    [11] Wieczorek S, Krauskopf B, Simpson T B, et al. The dynamical complexity of optically injected semiconductor lasers[J]. Physics Reports, 2005, 416(1-2): 1-128.
    [12] Sciamanna M, Valle A, Mégret P, et al. Nonlinear polarization dynamics of current-modulated vertical-cavity surface-emitting lasers[J]. Physical Review E, 2003, 4986:273-284.
    [13] Qi X, Bertling K, Taimre T, et al. Terahertz imaging with self-pulsations in quantum cascade lasers under optical feedback[J]. APL Photonics, 2021, 6(9): 091301.
    [14] Spitz O, Herdt A, Wu J, et al. Peculiarities and predictions of rogue waves in mid-infrared quantum cascade lasers under conventional optical feedback[C]//Quantum Sensing and Nano Electronics and Photonics XVII. SPIE, 2020, 11288: 69-75.
    [15] Spitz O, Wu J G, Herdt A, et al. Investigation of Chaotic and Spiking Dynamics in Mid-Infrared Quantum Cascade Lasers Operating Continuous-Waves and Under Current Modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019,25(6):1200311.
    [16] Yu N, Diehl L, Cubukcu E, et al. Coherent Coupling of Multiple Transverse Modes in Quantum Cascade Lasers[J]. Physical Review Letters, 2009, 102(1):013901.
    [17] Risken H, Nummedal K. Self-Pulsing in Lasers[J]. Journal of Applied Physics, 1968, 39(10):4662-4672.
    [18] Graham R, Haken H. Quantum theory of light propagation in a fluctuating laser-active medium[J]. Zeitschrift für Physik A Hadrons and nuclei, 1968, 213(5):420-450.
    [19] Wang C Y, Diehl L, Gordon A, et al. Coherent instabilities in a semiconductor laser with fast gain recovery[J]. American Physical Society, 2007, 75:031802.
    [20] Gordon A, Wang C Y, Diehl L, et al. Multimode regimes in quantum cascade lasers[J]. American Physical Society, 2008, 77:053904.
    [21] Bai J. Phase Instability and Amplitude Instability of Quantum-Cascade Lasers With Fabry-Perot Cavity[J]. IEEE Transactions on Nanotechnology, 2012, 11:292-297.
    [22] Vukovic N, Radovanovic J, Milanovic V, et al. Multimode RNGH instabilities of Fabry-Perot cavity QCLs: impact of diffusion[J]. Optical and quantum electronics, 2016, 48:254.
    [23] Vukovic N, Radovanovic J, Milanovic V, et al. Numerical study of Risken–Nummedal–Graham–Haken instability in mid-infrared Fabry–Pérot quantum cascade lasers[J]. Optical and Quantum Electronics, 2020, 52:91.
    [24] Gaji?A, Radovanovi?J, Vukovi?N, et al. Theoretical approach to quantum cascade micro-laser broadband multimode emission in strong magnetic fields[J]. Physics Letters A, 2021, 387: 127007.
    [25] Chen C, Jia Z, Lyu Y, et al. Broadband laser chaos generation using a quantum cascade laser with optical feedback[J]. Optics Letters, 2021, 46(19): 5039-5042.
    [26] Donati S, Horng R. The Diagram of Feedback Regimes Revisited[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1500309.
    [27] Erneux T, Gavrielides A, Sciamanna M. Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback[J]. Physical Review A, 2002, 66:033809.
    [28] Mezzapesa F P, Columbo L L, Brambilla M, et al. Intrinsic stability of quantum cascade lasers against optical feedback[J]. Optics Express, 2013, 21(11):13748-13757.
    [29] Qi X, Bertling K, Taimre T, et al. Observation of optical feedback dynamics in single-mode terahertz quantum cascade lasers: Transient instabilities[J]. Physical Review A, 2021, 103(3): 033504.
    [30] Spitz O, Wu J, Carras M, et al. Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures[J]. Laser Physics Letters, 2018, 15(11): 116201.
    [31] Spitz O, Wu J, Herdt A, et al. Extreme events in quantum cascade lasers[J]. Advanced Photonics, 2020, 2(6):12.
    [32] Wang X G, Zhao B B, Deng Y, et al. Nonlinear dynamics of a quantum cascade laser with tilted optical feedback[J]. Physical Review A, 2021, 103(2): 023528.
    [33] Jumpertz L, Carras M, Schires K, et al. Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers[J]. Applied Physics Letters, 2014, 105(13):553-158.
    [34] Wieczorek S, Krauskopf B, Simpson T B, et al. The dynamical complexity of optically injected semiconductor lasers[J]. Physics Reports, 2012, 416(1-2):1-128.
    [35] Meng B, Wang Q J. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers[J]. Optics Express, 2012, 20(2):1450-1464.
    [36] Zhao B B, Kovanis V N, Wang C. Tunable Frequency Comb Generation Using Quantum Cascade Lasers Subject to Optical Injection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6):1900207.
    [37] Hsieh K L, Hung Y H, Hwang S K, et al. Radio-over-fiber DSB-to-SSB conversion using semiconductor lasers at stable locking dynamics[J]. Optics Express, 2016, 24(9): 9854-9868.
    [38] Zhuang J P, Li X Z, Li S S, et al. Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser[J]. Optics Letters, 2016, 41(24): 5764-5767.
    [39] Taubman M S, Myers T L, Cannon B D, et al. Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(14): 3457-3468.
    [40] Wang C, Grillot F, Kovanis V I, et al. Modulation properties of optically injection-locked quantum cascade lasers[J]. Optics letters, 2013, 38(11): 1975-1977.
    [41] Erneux T, Kovanis V, Gavrielides A. Nonlinear dynamics of an injected quantum cascade laser[J]. Physical Review E, 2013, 88(3): 032907.
    [42] Dhooge A, Govaerts W, Kuznetsov Y A. MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs[J]. ACM Transactions on Mathematical Software (TOMS), 2003, 29(2): 141-164.
    [43] Wang X G, Zhao B B, Grillot F, et al. Frequency noise suppression of optical injection-locked quantum cascade lasers[J]. Optics Express, 2018, 26(12): 15167-15176.
    [44] Simpson T B, Liu J M, AlMulla M, et al. Limit-cycle dynamics with reduced sensitivity to perturbations[J]. Physical review letters, 2014, 112(2): 023901.
    [45] AlMulla M, Liu J M. Stable periodic dynamics of reduced sensitivity to perturbations in optically injected semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 601-608.
    [46] Wang C, Raghunathan R, Schires K, et al. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation[J]. Optics letters, 2016, 41(6): 1153-1156.
    [47] Tiana-Alsina J, Quintero-Quiroz C, Panozzo M, et al. Experimental study of modulation waveforms for entraining the spikes emitted by a semiconductor laser with optical feedback[J]. Optics express, 2018, 26(7): 9298-9309.
    [48] Spitz O, Wu J G, Herdt A, et al. Investigation of Chaotic and Spiking Dynamics in Mid-Infrared Quantum Cascade Lasers Operating Continuous-Waves and Under Current Modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6):1200311.
    [49] Spitz O, Durupt L, Grillot F. Competition between Entrainment Phenomenon and Chaos in a Quantum-Cascade Laser under Strong Optical Reinjection[C]//Photonics. MDPI, 2022, 9(1): 29.
    [50] Paiella R. Terahertz quantum cascade lasers: Going ultrafast[J]. Nature Photonics, 2011, 5(5): 253.
    [51] Barbieri S, Ravaro M, Gellie P, et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis[J]. Nature Photonics, 2011, 5(5): 306-313.
    [52] Maysonnave J, Maussang K, Freeman J R, et al. Mode-locking of a terahertz laser by direct phase synchronization[J]. Optics Express, 2012, 20(19): 20855-20862.
    [53] Dawlaty J M, Shivaraman S, Chandrashekhar M, et al. Measurement of Ultrafast Carrier Dynamics in Epitaxial Graphene[J]. Appl.phys.lett, 2008, 92(4):197.
    [54] Strait J, Dawlaty J, Shivaraman S, et al. Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene[J]. Nano Letters, 2008, 8(12):4248.
    [55] Bianco F, Miseikis V, Convertino D, et al. THz saturable absorption in turbostratic multilayer graphene on silicon carbide[J]. Optics Express, 2015, 23(9):11632.
    [56] Bianchi V, Carey T, Viti L, et al. Terahertz saturable absorbers from liquid phase exfoliation of graphite[J]. Nature Communication, 2017, 8:15763.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

FENG Wei, MAO Yu, MENG Yue, RENG Tian-Liang, WANG Chang, CAO Jun-Cheng. Progress in the study of nonlinear dynamic characteristics based on quantum cascade lasers[J]. Journal of Infrared and Millimeter Waves,2023,42(6):762~770

Copy
Share
Article Metrics
  • Abstract:403
  • PDF: 1930
  • HTML: 292
  • Cited by: 0
History
  • Received:January 17,2023
  • Revised:October 23,2023
  • Adopted:February 21,2023
  • Online: October 23,2023
Article QR Code