Research on millimeter-wave ridged half-mode waveguide filter based on periodic defected ground structure
CSTR:
Author:
Affiliation:

1.National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100071, China;2.College of Electronic Science, National University of Defense Technology, Changsha 410073, China

Clc Number:

TN713

Fund Project:

Supported by National Natural Science Foundation of China (62101565)

  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A monolithic ridged half-mode waveguide bandpass filter with a periodic defected ground array has been successfully fabricated. Utilizing the high-pass characteristic of the waveguide and the rejection band generated by the periodic defected ground structure, an effective passband was created. The measured results show a 3 dB passband from 39.4 to 45.4 GHz, centered at 42.4 GHz with a 3-dB fractional bandwidth of 14.1%. The lowest insertion loss of 2.4 dB locates at 44.2 GHz. The suppression in upper rejection band reaches 40 dB at 58 GHz. Compared to conventional rectangular waveguide filters, the width of the proposed filter is reduced by 64%, which benefits to the integration and miniaturization. With the development of the next generation wireless communication (5G) towards millimeter-wave band, the miniaturized millimeter-wave filter has promising potential for 5G communication.

    Reference
    [1] PENG Zhang-You, LI Wen. AUKF-based beam tracking algorithm in Millimeter-Wave mobile communication [J]. Journal of Infrared Millimeter Waves,(彭章友,李文。毫米波移动通信中基于AUKF的波束跟踪算法。红外与毫米波学报)2021, 40(3):334-340.
    [2] Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: a comprehensive survey [J]. IEEE Communications Surveys & Tutorials, 2016, 18(3):1617-1655. 10.1109/comst.2016.2532458
    [3] Pozar D M. Microwave Engineering [M]. New York: Wiley, 2012. 10.1109/mwsym.2012.6259373
    [4] Williams A E. A four-cavity elliptic waveguide filter[J]. IEEE Transactions on Microwave Theory & Techniques, 1970, 18(12): 1109-1114. 10.1109/tmtt.1970.1127419
    [5] Ehsan N, Vanhille K, Rondineau S, et al. Broadband micro-coaxial wilkinson dividers[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(11):2783-2789. 10.1109/tmtt.2009.2032345
    [6] Grishina D A, Harteveld C, Woldering L A, et al. Method to make a single-step etch mask for 3D monolithic nanostructures[J]. Nanotechnology, 2015, 26(50):505302. 10.1088/0957-4484/26/50/505302
    [7] Jones T R, Daneshmand M. The microfabrication of monolithic miniaturized ridged half-mode waveguides for 5G millimeter-wave communication systems[C]. IEEE/MTT-S International Microwave Symposium – IMS, 2018. 10.1109/mwsym.2018.8439606
    [8] Zhao X H, Bao J F, Shan G C, et al. D-band micromachined silicon rectangular waveguide filter[J]. IEEE Microwave & Wireless Components Letters, 2012, 22(5):230-232. 10.1109/lmwc.2012.2193121
    [9] David F, Dalmay C, Chatras M, et al. Micro-additive fabrication of 38 GHz resonators and filters[C]. In Proc. 47th Eur. Microw. Conf.Nuremberg, Germany, 2017. 10.23919/eumc.2017.8230995
    [10] Jones T R, Vahabisani N, Der E T, et al. Monolithic millimeter-wave air-filled waveguide resonator for filter applications[J]. IEEE Microwave &Wireless Components Letters, 2019, 29(6):379-381. 10.1109/lmwc.2019.2910139
    [11] Vahidpour M, Sarabandi K. Micromachined J-band rectangular waveguide filter[C]. General Assembly and Scientific Symposium IEEE, 2011. 10.1109/ursigass.2011.6050631
    [12] Vahabisani N, Daneshmand M. Monolithic millimeter-wave MEMS waveguide switch[J]. IEEE Transactions on Microwave Theory & Techniques, 2015, 63(2):340-351. 10.1109/tmtt.2014.2378253
    [13] Lai Q H, Fumeaux C, Wei H, et al. Characterization of the propagation properties of the half-mode substrate integrated waveguide[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(8):1996-2004. 10.1109/tmtt.2009.2025429
    [14] Zhou Q H, Jones T R, Moghadas H, et al. Microfabrication of monolithic wafer-level miniaturized millimeter-wave air-filled half-mode waveguide filter based on the inward curving split ring resonator array[J]. Nanotechnology, 2020, 31(19):195202. 10.1088/1361-6528/ab7048
    [15] Wang Y, Wei H, Dong Y, et al. Half mode substrate integrated waveguide (HMSIW) bandpass filter[J]. IEEE Microwave &Wireless Components Letters, 2007, 17:265-267. 10.1109/lmwc.2007.892958
    [16] Jones T R, Daneshmand M. The characterization of a ridged half-mode substrate-integrated waveguide and its application in coupler design[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11):3580-3591. 10.1109/tmtt.2016.2604241
    [17] Marcuvitz N. Waveguide Handbook[M]. McGraw-Hill, 1951.
    [18] Park D J, Park S J, Park I, et al. Dielectric substrate effect on the metamaterial resonances in terahertz frequency range[J]. Current Applied Physics, 2014, 14(4):570-574. 10.1016/j.cap.2014.01.015
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHOU Qi-Hui, LIU Chen-Xi. Research on millimeter-wave ridged half-mode waveguide filter based on periodic defected ground structure[J]. Journal of Infrared and Millimeter Waves,2022,41(4):690~695

Copy
Share
Article Metrics
  • Abstract:259
  • PDF: 1539
  • HTML: 129
  • Cited by: 0
History
  • Received:October 25,2021
  • Revised:August 15,2022
  • Adopted:November 23,2021
  • Online: August 10,2022
Article QR Code