Plasmon-induced transparency in π-cascade structure of phosphorene

College of Science, Donghua University, Shanghai 201620, China

Clc Number:


Fund Project:

Supported by the Fundamental Research Funds for the Central Universities, and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2020093), Natural Science Foundation of Shanghai (21ZR1402200)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments

    Phosphorene provides a new choice for the construction of optoelectronic devices based on two-dimensional materials because of its adjustable band gap, high carrier mobility and in-plane anisotropy. Plasmon-induced transparency in the π-cascade and compact structure of phosphorene was numerically simulated by the finite difference time domain method. By changing the structure distribution and Fermi energy level of phosphorene and other parameters, a wide range of tunable plasmon-induced transparency from mid-infrared to far-infrared was realized. Among them, the number, intensity and position of transparent windows are flexibly modulated. In addition, the sensitivity of induced transparent window to the angle of polarization is studied. The results provide a reference for the development of biosensors, photo-detectors and optical switches based on the surface plasmon of phosphorene.

    Cited by
Get Citation

XU Ding-Yang, HAN Li, XING Huai-Zhong, CHU Jun-Hao. Plasmon-induced transparency in π-cascade structure of phosphorene[J]. Journal of Infrared and Millimeter Waves,2021,40(4):561~568

Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
  • Received:October 27,2020
  • Revised:August 07,2021
  • Adopted:December 21,2020
  • Online: July 30,2021
  • Published: