Attitude direction estimation of space target parabolic antenna loads using sequential terahertz ISAR images
CSTR:
Author:
Affiliation:

College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Clc Number:

O45

Fund Project:

Supported by National Natural Science Foundation of China (61871386), the Natural Science Fund for Distinguished Young Scholars of Hunan Province (2019JJ20022).

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To monitor the working state of a space target, attitude direction estimation of parabolic antenna loads from a multi-view sequence of the terahertz (THz) inverse synthetic aperture radar (ISAR) images is developed. A space-based THz radar imaging system, which aims to achieve surveillance of high earth orbit satellite targets and small satellite targets, is proposed. Under the theorem that the projection of the parabolic antenna edge (a circle) along arbitrary observation direction is an ellipse, an improved Randomized Hough Transform is proposed to automatically detect and calculate the five key parameters of ellipse components from each THz ISAR image. To ensure the efficiency, accuracy, and robustness of the estimated attitude direction, a two-level estimation algorithm is proposed. The radius and three-dimensional center location of the antenna edge are estimated first. Then, taking these parameters as prior information, the attitude direction is estimated by solving an optimization to minimize the joint error about the length of semi-minor axis and the inclination angle of an ellipse. Electromagnetic scattering data of satellite model targets illustrate the effectiveness and robustness of the proposed method in attitude direction estimation of parabolic antenna loads.

    Reference
    [1] SHENG Wei-Dong , LONG Yun-Li , ZHOU Yi-Yu . Analysis of target location accuracy in space-based optical-sensor network [J]. Acta Optica Sinica盛卫东,龙云利,周一宇. 天基光学传感器网络目标定位精度分析,光学学报, 2011, 31(2): 255-261. 10.3788/aos201131.0228001
    [2] PENG Hua-Feng , CHEN Jing , ZHANG Bin . Simulation study of space multi-target imaging for space-based opto-electronic telescope [J]. Optical Technique彭华峰,陈鲸,张彬. 天基光电望远镜空间多目标成像模拟技术研究,光学技术, 2007, 33(2): 219-222.
    [3] Avent R , Shelton J . The ALCOR C-band imaging radar [J]. IEEE Antennas Propag. Mag., 1996, 38(3): 16-27. 10.1109/74.511949
    [4] Ender J , et al . Radar techniques for space situational awareness [C]. International Radar Symposium, 2011: 21-26.
    [5] Usoff J , Leushacke L , Brenner A , et al . Haystack ultra-wideband satellite imaging radar antenna [C]. IEEE Benjamin Franklin Symposium on Microwave and Antenna Subsystems for RadarTelecommunication, and Biomedical Applications, 2016.
    [6] ZHANG Ye , WU Chen-Guang , DENG Bin , et al . Terahertz SAR moving target imaging method based on the phase compensation and equivalent movement [J]. Journal of Systems Engineering and Electronics张野,吴称光,邓彬等. 基于相位补偿和等效运动的太赫兹SAR运动目标成像方法,系统工程与电子技术, 2016, 38(10): 2296-2302. 10.3969/j.issn.1001-506X.2016.10.11
    [7] Caris M , Stanko S , Palm S , et al . 300 GHz radar for high resolution SAR and ISAR applications [C]. 16th International Radar SymposiumDresden, Germany, 2015: 577-580. 10.1109/irs.2015.7226313
    [8] Cheng B , Jiang G , Cheng W , et al . Real-time imaging with a 140 GHz inverse synthetic aperture radar [J]. IEEE Trans. THz Sci. Technol., 2013, 3(5): 594-605. 10.1109/tthz.2013.2268317
    [9] Zhang Y , Yang Q , Deng B , et al . Estimation of translational motion parameters in terahertz interferometric inverse synthetic aperture radar (InISAR) imaging based on a strong scattering centers fusion technique [J]. Remote Sens., 2019, 11(10). 10.3390/rs11101221
    [10] Zuo F , Li J , Hu R , et al . Unified coordinate system algorithm for terahertz video-SAR image formation [J]. IEEE Trans. THz Sci. Technol., 2018, 8(6): 725-735. 10.1109/tthz.2018.2872412
    [11] Perrier R , Arnaud E , Sturm P , et al . Satellite image registration for attitude estimation with a constrained polynomial model [C]. In Proc. IEEE Int. Conf. Image Process., 2010: 925–928. 10.1109/icip.2010.5650997
    [12] Yang X , Wen G , Zhong J , et al . A 3-D electromagnetic-model-based algorithm for absolute attitude measurement using wideband radar [J]. IEEE Geosci. Remote Sens. Lett., 2015, 12(9): 1878-1882. 10.1109/lgrs.2015.2434959
    [13] Lemmens S , Krag H , Rosebrock J , et al . Radar mappings for attitude analysis of objects in orbit [C], In Proc. 6th Eur. Conf. Space DebrisDarmstadt, Germany, 2013: 20–24.
    [14] CAO Xing-Hui , SONG Qing-Lei , JIANG Yan , et al . Interferometric ISAR 3D imaging of target satellite in low earth orbit [J]. Radar Science and Technology曹星慧,宋庆雷,姜岩,等。 低轨卫星目标干涉ISAR三维成像方法,雷达科学与技术, 2007, 5(3): 204-208.
    [15] Mcfadden E , et al . Three-dimensional reconstruction from ISAR sequences [C]. In Proc. Aerosense Int Soc. Opt. Photon., 2002: 58–67. 10.1117/12.488289
    [16] Zhou Z , Du R , Liu L , et al . A novel method of three-dimensional geometry reconstruction of space targets based on the ISAR image sequence [C]. In 6th Asia-Pacific Conference on Synthetic Aperture Radar, 2019. 10.1109/apsar46974.2019.9048527
    [17] Ferrara M , Arnold G , Stuff M , Shape and motion reconstruction from 3 D-to-1D orthographically projected data via object-image relations [J]. IEEE Trans. Pattern Anal . Mach. Intell., 2009, 31(10): 1906-1912.
    [18] Liu L , Zhou F , Bai X , et al . Joint crossrange scaling and 3D geometry reconstruction of ISAR targets based on factorization method [J]. IEEE Trans. Image Process., 2016, 25(4): 1740-1750. 10.1109/tip.2016.2526905
    [19] Wang F , Xu F , Jin Y . Three-Dimensional Reconstruction From a Multiview Sequence of Sparse ISAR Imaging of a Space Target [J]. IEEE Trans. Geosci. Remote Sens., 2018, 56(2): 611-620. 10.1109/tgrs.2017.2737988
    [20] Yang S , Jiang W , Tian B . ISAR Image Matching and 3D Reconstruction Based on Improved SIFT Method [C]. In International Conference on Electronic Engineering and Informatics, 2019: 224-228. 10.1109/eei48997.2019.00056
    [21] Hartley R , Zisserman A , Jin T . Multiple view geometry in computer vision [M], Cambridge, MA, USA: Cambridge, 2003: 244-250. 10.1017/cbo9780511811685
    [22] Tomasi C , Kanade T . Shape and motion from image streams under orthography: A factorization method [J]. Int. J. Comput. Vis., 1992, 9(2): 137-154. 10.1007/bf00129684
    [23] WANG Xin , GUO Bao-Feng , SHANG Chao-Xuan . 3D reconstruction of target geometry based on 2D data of inverse synthetic aperture radar images [J]. Journal of Electronics and Information Technology王昕,郭宝峰,尚朝轩。 基于二维ISAR图像序列的雷达目标三维重建方法,电子与信息学报, 2013, 35(10): 2475-2480. 10.3724/SP.J.1146.2013.00140
    [24] Yin H , Huang P . Further comparison between two concepts of radar target angular glint [J]. IEEE Trans. Aerosp. Electron. Syst., 2008, 44(1): 372-380. 10.1109/taes.2008.4517012
    [25] Liu T , et al . Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band [J]. IEEE Trans. THz Sci. Technol., 2018, 8(2): 165-173. 10.1109/tthz.2017.2781462
    [26] Zhou Y , Lei Z , Cao Y , et al . Attitude estimation and geometry reconstruction of satellite targets based on ISAR image sequence interpretation [J]. IEEE Trans. Aerosp. Electron. Syst., 2018, 55(4): 1698-1711. 10.1109/taes.2018.2875503
    [27] Kennedy J , Eberhart R . Particle swarm optimization [C]. Proc. IEEE Int. Conf. Neural Netw., 2002: 1942–1948. 10.1109/icnn.1995.488968
    [28] Montenbruck O , Gill E . Satellite orbits: Models, methods and applications [M]. Cambridge, MA, USA: Springer, 2012.
    [29] Li X , Liu G , Ni J , et al . Autofocusing of ISAR images based on entropy minimization [J]. IEEE Trans. Aerosp. Electron. Syst., 1999, 35(4): 1240-1252. 10.1109/7.805442
    [30] Wang J , Kasilingam D . Global range alignment for ISAR [J]. IEEE Trans. Aerosp. Electron. Syst., 2003, 39(1): 351-357. 10.1109/taes.2003.1188917
    [31] Martorella M . Novel approach for ISAR image cross-range scaling [J]. IEEE Trans. Aerosp. Electron. Syst., 2008, 44(1): 281-294. 10.1109/taes.2008.4517004
    [32] Xing M , Wu R , Lan J , et al . Migration through resolution cell compensation in ISAR imaging [J]. IEEE Geosci. Remote Sens. Lett., 2004, 1(2): 141-144. 10.1109/lgrs.2004.824766
    [33] Liang M , et al . Micro-Doppler characteristics of sliding-type scattering center on rotationally symmetric target[M]. Science China Information Science, 2011, 54(9): 1957-1967. 10.1007/s11432-011-4254-3
    [34] Keller J . Geometrical theory of diffraction [J]. J. Optics Soc of America., 1962,52(2):116-130. 10.1364/josa.52.000116
    [35] Kline M , Kay I . Electromagnetic theory and geometrical optics [M]. J. Wiley and Sons, New York, 1965: 124-144.
    [36] James G . Geometrical theory of diffraction for electromagnetic waves [M]. Peter Peregrinus Ltd. England, 1981: 96-113.
    [37] Wang F , Thomas F , Jin Y . Simulation of ISAR imaging for a space target and reconstruction under sparse sampling via compressed sensing [J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(6): 3432-3441. 10.1109/TGRS.2014.2376940
    [38] Yusuf U . Modified theory of physical optics approach to wedge diffraction problems [J]. Optics Expre., 2005, 13(1): 216-224. 10.1364/opex.13.000216
    [39] Liu Z , Cui T , Xing Z , et al . Electromagnetic scattering characteristics of PEC targets in the terahertz regime [J]. IEEE Antennas Propag. Mag., 2009, 51(1): 39-50. 10.1109/map.2009.4939018
    [40] Deans S . The radon transform and some of its applications [M]. North Chelmsford, MA, USA: Courier Corporation, 2007: 10-30.
    [41] Priyanka M . A survey of Hough transform [J]. Pattern Recog., 2015, 48(3): 993-1010. 10.1016/j.patcog.2014.08.027
    [42] Xu L , Oja E , Kultaned P . A new curve detection method: Randomized Hough Transform (RHT) [J]. Pattern Recog. Lett., 1990, 11(5): 331-338. 10.1016/0167-8655(90)90042-z
    [43] CHEN Yan-Xin , QI Fei-Hu . A new ellipse detection method using randomized Hough transform [J]. J. Infrared Millim. Waves陈燕新,戚飞虎. 一种新的基于随机Hough变换的椭圆检测方法. 红外与毫米波学报, 2000, 19(1): 43-47.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Ye, YANG Xiao, JIANG Xin-Rui, YANG Qi, DENG Bin, WANG Hong-Qiang. Attitude direction estimation of space target parabolic antenna loads using sequential terahertz ISAR images[J]. Journal of Infrared and Millimeter Waves,2021,40(4):496~507

Copy
Share
Article Metrics
  • Abstract:577
  • PDF: 2364
  • HTML: 216
  • Cited by: 0
History
  • Received:October 21,2020
  • Revised:August 08,2021
  • Adopted:January 26,2021
  • Online: July 30,2021
Article QR Code