Abstract:Bistatic forward-looking synthetic aperture radar (BFSAR) has many potential applications, such as self-landing in bad weather, military detection. Millimeter-wave SAR has high resolution, light weight small size and short synthetic aperture time advantages. Therefore, this paper combines millimeter-wave and BFSAR techniques, carry out the research of imaging algorithms for millimeter-wave BFSAR. However, imaging algorithms for BFSAR are the difficulties of the study. Due to the special forward-looking geometry, imaging algorithms for bistatic SAR can not be applied to BFSAR directly. So, this paper proposes a modified Loffeld's Bistatic Formula (MLBF). The new method compared with other extended Loffeld's Bistatic Formula (ELBF) can obtain a bistatic point target reference spectrum, which is accurate enough for bistatic forward-looking configuration. Then, an Omega-k algorithm based on the reference spectrum is derived. Finally, simulations validate the accuracy of the MLBF method and the effectiveness of the Omega-k imaging algorithm.