基于深度学习方法的OCT皮肤癌诊断:发展与展望
DOI:
CSTR:
作者:
作者单位:

1.复旦大学工程与应用技术研究院;2.复旦大学附属华山医院皮肤科

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市自然科学基金 (22ZR1404300, 22ZR1409500),上海市 “科技创新行动计划” (22S31905500),复旦大学医工交叉项目 (yg2021-032, yg2022-2), 上海市“卫生健康青年人才” (2022YQ043), 华山医院创新培育基金 (2024CX06)


Deep Learning Based Skin Cancer Diagnosis in OCT: Progress and Prospects
Author:
Affiliation:

1.The Academy for Engineering and Technology, Fudan University;2.The Department of Dermatology, Huashan Hospital, Fudan University

Fund Project:

Natural Science Foundation of Shanghai (22ZR1404300, 22ZR1409500), Shanghai Science and Technology Innovation Action Plan (22S31905500), Medical Engineering Fund of Fudan University (yg2021-032, yg2022-2), Young Talents of Shanghai Health Commission (2022YQ043), Huashan Hospital Innovation Fund (2024CX06).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    皮肤光学相干层析成像(Optical Coherence Tomography, OCT)为皮肤组织结构和病理特征分析提供了高分辨率影像基础。开发自动化图像分析方法(如分割与分类)对辅助皮肤病诊断及治疗评估具有重要临床价值,可为医疗决策提供定量支持。相较于传统方法和早期机器学习(Machine Learning, ML)技术,深度学习(Deep Learning, DL)显著提升了分析效率与可重复性,有效减少人工耗时。该文系统综述了当前DL技术在皮肤OCT图像分析中的应用进展,着重探讨其在图像降噪、皮肤分割和皮肤癌诊断中的技术路径,并指出该领域亟待解决的模型泛化性、数据异构性等问题,为后续研究提供理论参考与技术发展方向的指引。

    Abstract:

    Optical Coherence Tomography (OCT) provides high-resolution images of skin tissue structure and pathological features. Automated image analysis methods (such as segmentation and classification) are important for assisting skin disease diagnosis and treatment evaluation. These methods provide quantitative support for medical decisions. Compared with traditional methods and early machine learning (ML) techniques, deep learning (DL) improved analysis efficiency and reproducibility. It also reduced manual processing time significantly. This paper systematically reviewed the application progress of DL in skin OCT image analysis. It focused on technical approaches for image denoising, skin layer segmentation, and skin cancer diagnosis. The study identified key challenges including model generalization and data heterogeneity. The findings provide theoretical references and technical guidance for future research directions.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-21
  • 最后修改日期:2025-05-16
  • 录用日期:2025-06-05
  • 在线发布日期:
  • 出版日期:
文章二维码