摘要
太赫兹波因其低能性、高透过性、抗干扰能力强、指纹性等独特特性,在探测、成像、雷达、军事防御等领域发挥着至关重要的作用,近年来得到了国内外学者的高度重视。但高成本和高损耗仍然是制约太赫兹调控发展的重要因素。钙钛矿材料具有优异的光电学特性,且制备工艺简单,可大批量生产,成为制备太赫兹探测器最有潜力的材料之一。此外,钙钛矿易于调节的特性弥补了超表面难以调节的缺陷,满足了可调谐超表面的需求。将这两者结合起来,可以在光场下有效地调控太赫兹。本文设计了两种编码超表面,由有机-无机杂化钙钛矿CH3NH3PbI3、聚酰亚胺和铝组成,并通过光场控制分别改变两种结构的工作频率,将结果与理论计算进行对比验证其效果。第一种结构可以通过光场调控,在宽带工作频率和高效工作效率之间选取。第二种结构仅工作在0.1 THz,可以通过光改变相位,使得原有结构相位出现反转,从而控制波束反射方向。在此基础上我们制备了器件并进行了验证。本文一定程度上填补了编码超表面在光场调控领域下的空白,为后续研究提供了一种思路。
太赫兹(THz)是处于微波与红外之间的特殊电磁波,具有瞬态性、谱信息丰富、宽带性、非电离等优势,已在基础研究、无损检测、国土安全、安全筛查和医学成
2014年,崔铁军院士课题组创新性地将数字编码的概念引入超表面电磁学领域,从相位和幅度的角度出发,提出了编码超表面的概念。这一突破改变了超表面的设计思路,简化了其分析复杂度并且降低了设计难度,使其成为当前研究工作的热点之
打破了传统超表面固化的局限性,提高了超表面的适用性,然而这种方法不可避免地增加了系统能耗,且需要额外的信号源来驱动有源器件。2018年,程强教授课题组采用可编程和动态调节的方法,创新性引入时间维度,成功研制了动态时域数字编码超表面,这一创新提高了谐波调控的适用性和准确性。基于该技术构建的新型无线通信系统,简化了硬件系统的复杂性,提高了能源利用率,降低了系统功耗。这些优势使得该技术在实际应用中更具可行性和可持续性,展示了其在科技创新和能源管理方面的广阔应用前
为实现对电磁波的主动调控,本文引入了新型材料有机-无机杂化钙钛矿(CH3NH3PbI3)。由于钙钛矿材料具备优异的光电特性,如大的光吸收系数、带隙可调、高折射率以及可以快速响应外部光场的变化
本文先对编码超表面的反射原理进行了理论分析,分析了波束成因,之后通过仿真与修改设计了一种可变工作频率的编码超表面,其无光状态下在0.1~0.14 THz工作,施加光照后仅在0.14 THz状态工作但对于雷达散射截面缩减效果会更佳,并计算了此结构波束数量与偏转角度,将理论同仿真相验证,证实了理论计算的准确性。通过此结构验证了钙钛矿的光电特性,并以此为基础进一步进行研究,设计了一款能够变换工作相位,使得“0”结构与“1”结构可以在光照下进行转换,无光状态下“0”结构在光照下表现出的特性与无光状态下“1”结构相当,可以视为同一结构。通过将这组结构与不可调谐结构单元相组合,即可灵活调控波束数量与方向,实现对电磁波的主动调控。
本文设计了利用CH3NH3PbI3光电特性构建的 1 bit 编码超表面结构,即两个结构具有 180°的相位差。其原理是通过特定的排列组合,使入射平面波被随机分散到各个方向,形成随机散射波。当反射波垂直入射到超表面上时,其表面的远场散射函数表达式
, | (1) |
, | (2) |
. | (3) |
在1 bit编码超表面中, 只能是0或π。当单元0与1的幅度近似相同时, 两单元的散射特性会相消,导致辐射特性几乎为
, | (4) |
n为第n个偶极子辐射源,表示其位置坐标。
为实现对电磁波的主动调控,通过引入新型材料CH3NH3PbI3,设计了一种可变工作频率的编码超表面如

图1 编码超表面结构示意图:(a)无光状态时“0”结构示意图;(b)无光状态时“1”结构示意图;(c) 有光状态“0”结构示意图;(d) 有光状态时“1”结构示意图
Fig.1 Schematic diagram of the coding metasurface structure :(a) 0 structure in dark state ;(b) 1 structure in dark state ;(c) 0 structure in light state;(d) 1 structure in light state
利用CH3NH3PbI3的良好导电性,利用CST仿真软件对结构参数进行优化,构建了顶层为CH3NH3PbI3和金薄膜层的复合结构,中间层为PI,底层为铝薄膜层的编码超表面,本文模型中无光状态CH3NH3PbI3以橙色部分表示,有光状态钙钛矿以红色表示,PI以蓝色表示,金以黄色表示,铝以灰色表示。
单元“0”和“1”的振幅和相位图如

图2 (a)无光反射振幅;(b)无光反射相位;(c)有光反射振幅;(d)有光反射相位
Fig.2 (a)Insulating state amplitude of reflection; (b) insulating state reflection phase; (c) metallic state amplitude of reflection; (d) metallic state reflection phase
设计结构绝缘状态下,能在0.1~0.14 THz频率区间内工作。当平面波垂直入射时,对于0101/0101结构,利用

图3 钙钛矿为绝缘态:(a) 0101/0101 在0.1 THz远场波束图;(b) 0101/0101 在0.14 THz远场波束图;(c)0101/1010在0.1 THz远场波束图;(d)0101/1010在0.14 THz远场波束图
Fig.3 Perovskite is insulated:(a) beam pattern of the far field for the coding sequence 0101/0101 at 0.1 THz;(b) 0101/0101 at 0.14 THz; (c) 0101/1010 at 0.1 THz;(d) 0101/1010 at 0.14 THz perovskite for insulating state with 0.14 THz far field
仿真结果和计算结果如图3(c)(d)所示,从图中观察到平面波频率在 0.1 ~0.14 THz 时,当编码序列为0101/1010, 反射波束被反射到五个不同的方向,且符合计算,电磁波反射后,每束能量非常小,能够降低RCS,实现波束调控和雷达干扰,从而达到隐身效果。但由于0.1 THz时振幅值有一定相差,0.14 THz时两单元结构相位差与180°有一定差距,两个单元的散射特性不能完全抵消,导致都还有明显的中心束,缩减效果并不彻底,但符合设计预期。
从
对于编码序列0101/0101仿真结果与计算结果基本一致,如

图4 钙钛矿为金属态:(a) 0101/0101在0.1 THz远场波束图;(b) 0101/0101在0.14 THz远场波束图;(c) 0101/1010在0.1 THz远场波束图;(d) 0101/1010在0.14 THz远场波束图
Fig.4 Perovskite is metallic:(a) beam pattern of the far field for the coding sequence 0101/0101 at 0.1 THz ;(b) 0101/0101 at 0.14 THz; (c) 0101/1010 at 0.1 THz ;(d) 0101/1010 at 0.14 THz
从
为了进一步测试器件性能,我们制备了编码超表面。首先,对聚酰亚胺基片依次使用丙酮、异丙醇、去离子水进行超声清洗15 min;然后在聚酰亚胺基片上旋涂光刻胶;接着,将带有编码超表面图形的掩模板对准聚酰亚胺基片,通过紫外曝光使超表面形状固化;之后移除掩模板,将其放入显影液中震荡,利用显影液溶解曝光后的光刻胶,从而把掩模板的图形复制到光刻胶中;随后,采用真空蒸镀系统得到薄膜纯度高的金材料超表面结构层,如

图5 CH3NH3PbI3编码超表面的器件图:(a)无CH3NH3PbI3薄膜的0101/0101结构编码超表面器件图;(b)无CH3NH3PbI3薄膜的0101/1010结构编码超表面器件图;(c)器件底层金属铝膜;(d)涂有CH3NH3PbI3薄膜的器件图
Fig.5 Device diagram of CH3NH3PbI3 encoding metasurface:(a) 0101/0101 structured encoded metasurface device without CH3NH3PbI3thin film;(b) 0101/1010 structured encoded metasurface device without CH3NH3PbI3 thin film; (c) bottom metal layer of the device;(d) device with CH3NH3PbI3 thin film.

图6 (a) 无编码超表面时黑暗和光照状态下钙钛矿吸收率;(b)钙钛矿编码超表面器件不同频率的反射振幅
Fig.6 (a) perovskite absorption under dark and light conditions without a coded metasurface; (b) reflection amplitude of coding metasurface units at different frequencies
本文通过将钙钛矿与编码超表面相结合,利用钙钛矿在无光状态下呈现绝缘性,在光照状态下呈现金属性的特性,根据编码超表面的工作频率这一重要参数,设计了一种频率可切换的编码超表面,通过光场调控,可在带宽和缩减效果之间进行取舍。利用CST软件仿真模拟了远场光束图,并通过器件实验测试,进一步验证了钙钛矿超表面器件光场调控的频率可变换的可靠性。构建1 bit可变频率编码超表面,但是对于2 bit甚至更多仍然适用,且可以呈现出1 bit无法呈现的形状。根据实际需求,通过选择和调整几种超表面可以对宽带、高效功能进行取舍,使用合适的结构。
References
Ghafoor S, Boujnah N, Rehmani M H.Tutorials, MAC protocols for terahertz communication: A comprehensive survey[J]. IEEE Communications Surveys ,2020, 22 (4):2236-2282. [百度学术]
Valušis G, Lisauskas A, Yuan H, et al. Roadmap of terahertz imaging[J]. Sensors, 2021, 21 (12):4092. [百度学术]
Song H.-J, Lee N. Technology, Terahertz communications: Challenges in the next decade[J]. IEEE Trans. Terahertz Sci. Technol. 2021, 12 (2): 105-117. [百度学术]
Li Y F, Yang R,Xie P H, et al. Simulation of terahertz metasurface controlled by light field based on novel perovskite materials[J]. High Power Laser and Particle Beams [百度学术]
李依凡,杨睿,解佩翰,等. 基于新型钙钛矿材料的光场调控太赫兹超表面仿真研究[J]. 强激光与粒子束,2023, 35 (12): 129001-1-129008. 10.11884/HPLPB202335.230128 [百度学术]
Zhou C, Peng X.-q, Li. Graphene-embedded coding metasurface for dynamic terahertz manipulation[J]. Optik,2020, 216: 164937. [百度学术]
Wang R,Deng B,Wang H, et al. JApplications, Scattering cross section of rough metallic spheres at terahertz frequencies[J]. Journal of Electromagnetic Waves,2022, 36 (1):1-17. [百度学术]
Satapathy A, Sawant K K, Mondal S. Recent progress on MXenes as an attenuator of terahertz radiation[J]. Electron. Mater,2023, 52 (3): 1749-1768. [百度学术]
Ri K.-J,Kim J.-S,Kim J.-H. Tunable triple-broadband terahertz metamaterial absorber using a single VO2 circular ring[J]. Opt. Commun,2023, 542: 129573. [百度学术]
Wang X,Xiao Z,Wang X,et al.Tunable and switchable common-frequency broadband terahertz absorption, reflection and transmission based on graphene-photosensitive silicon metamaterials[J]. Opt. Commun,2023, 541: 129555. [百度学术]
Ni X,Liu Z, Gu F, et al. PhotonicsSHA-2D: modeling of single-period multilayer optical gratings and metamaterials[J]. Computational program 2009:138655379. [百度学术]
Yu J J, Xie Y,PEI X . State-of-art of Metamaterials with Negative Poisson's Ratio[J] Journal of Mechanical Engineering [百度学术]
于靖军,谢岩,裴旭.负泊松比超材料研究进展[J]. 机械工程学报,2018, 54 (13): 1-14. [百度学术]
Zhang Z,Pang H, Georgiadis A. Wireless power transfer—An overview[J]. IEEE Trans. Ind. Electron.,2018, 66 (2): 1044-1058. [百度学术]
Yan X,Yang M,Zhang Z,et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors ,2019, 126: 485-492. [百度学术]
Bai L, Zhang X G, Jiang W X. Research progress of light-controlled electromagnetic metamaterials[J].Journal of Radars [百度学术]
柏林,张信歌,蒋卫祥.光控电磁超材料研究进展[J]. 雷达学报,2021, 10 (2): 240-258. [百度学术]
Li J, Li J, Zheng C, et al.Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging[J]. Carbon ,2021, 172:189-199. [百度学术]
Zhang L, Chen X Q, Zheng Y N, et al. Electromagnetic metasurfaces and information metasurfaces[J]. Chinese Journal of Radio Science [百度学术]
张磊,陈晓晴,郑熠宁,等.电磁超表面与信息超表面[J]. 电波科学学报,2021, 36 (6):817-828. 10.12265/j.cjors.2021218 [百度学术]
Guo C B, Zhao Z, Xu W K. Research advances of acoustic Metasurfaces[J] Science Technology and Engineering(郭晨冰,赵铮,许卫锴.声学超表面的研究与应用进展[J]. 科学技术与工程),2021, 21 (3): 845-851. [百度学术]
Yu N,Genevet P, et al.Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science,2011, 334 (6054): 333-337. [百度学术]
Li L,Ruan H, et al.Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10 (1): 1082. [百度学术]
Zhao J,Yang X, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. 2019, 6 (2): 231-238. [百度学术]
Li Q,Gupta M, et al.Active control of asymmetric Fano resonances with graphene-silicon-integrated terahertz metamaterials[J]. Adv. Mater. Technol, 2020, 5 (2): 1900840. [百度学术]
Cong L,Singh R,et al. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Adv. Mater, 2020, 32 (28): 2001418. [百度学术]
Wu G.-B,Dai J Y,et al.Sideband-free space–time-coding metasurface antennas[J]. Nat. Electron, 2022, 5 (11):808-819. [百度学术]
Saifullah Y, He Y, et al.Recent progress in reconfigurable and intelligent metasurfaces: A comprehensive review of tuning mechanisms, hardware designs, and applications[J]. Adv. Sci,2022, 9 (33): 2203747. [百度学术]
Yao X, Ding Y L, Zhang X D, et al. A review of the perovskite solar cells[J]. Acta Phys. Sin [百度学术]
姚鑫,丁艳丽,张晓丹, 钙钛矿太阳电池综述[J]. 物理学报, 2015, 64 (3): 038404. [百度学术]
Zhang Y,Du J, et al.Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films[J]. ACS Applied Materials ,2015, 7 (39): 21634-21638. [百度学术]
Li C,Han C, et al.Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films[J]. Sol. Energy Mater, 2017, 172: 341-346. [百度学术]
Zhao Y, Li C. Recent advances on organic‐inorganic hybrid perovskite photodetectors with fast response[J]. InfoMat ,2019, 1 (2): 164-182. [百度学术]
Soleimanioun N,Rani M, et al.Potential replacement to lead: Alkali metal potassium and transition metal zinc in organo-metal halide perovskite materials[J]. Journal of Alloys, 2021, 861:158207. [百度学术]
Tyznik C,Lee J, et al.Interfaces, Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency[J]. ACS Applied Materials, 2021, 13 (8): 10231-10238. [百度学术]
Wu G.-B, Dai J Y,et al.A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves[J]. Nat. Commun, 2023, 14 (1): 5155. [百度学术]
Chen M, Wang Y, et al. Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity[J]. ACS Nano,2022, 16 (10): 17263-17273. [百度学术]
Wilson J N, Frost J M, et al.Dielectric and ferroic properties of metal halide perovskites[J]. APL Mater, 2019, 7 (1):010901. [百度学术]
Li Y, Zhang Y, et al.Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors[J]. Nano Lett, 2020, 20 (8): 5646-5654. [百度学术]
Hong M J, Zhu L, et al.Time-resolved changes in dielectric constant of metal halide perovskites under illumination[J]. Am. Chem. Soc, 2020, 142 (47): 19799-19803. [百度学术]
Awni R A,Song Z,et al.Influence of charge transport layers on capacitance measured in halide perovskite solar cells[J]. Joule ,2020, 4 (3): 644-657. [百度学术]
Chen M, Zhao Z,Liu R F, et al. Novel Terahertz Spectrum-Measurement Method Based on Spectral Encoding[J]. Laser & Optoelectronics Progress [百度学术]
陈猛,赵自然,刘睿丰,等.基于光谱编码的太赫兹光谱测量新方法.激光与光电子学进展,2023, 60 (18): 1811015. [百度学术]
Cui T J, Qi M Q, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science, 2014, 3 (10): e218. [百度学术]
Yan X , Liang L J,Zhang Y T, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. [J] Acta Phys. Sin [百度学术]
闫昕,梁兰菊,张雅婷,等.基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究[J]. 物理学报,2015, 64 (15):158101. 10.7498/aps.64.158101 [百度学术]
Monticone F,Estakhri N M, et al.Full control of nanoscale optical transmission with a composite metascreen[J]. Phys. Rev. Lett,2013, 110 (20): 203903. [百度学术]