摘要
光学相干层析成像(Optical Coherence Tomography,OCT)技术具有非侵入、高分辨率、可实时成像等优点,在生物医学、材料学及红外传感等众多领域被广泛应用。设计了一种基于氮化硅(Si3N4)的脊形悬空光波导,基于时域有限差分法对所设计波导的主要结构参数进行了优化,并研究了该波导中产生的超连续谱特性。数值模拟结果表明,在脊宽=750 nm、脊高=700 nm、平板厚度=200 nm以及上覆层高=150 nm的优化结构下,当入射泵浦光波长为1.3 μm,峰值功率为2 kW,和脉宽为50 fs时,基于该光波导可以产生波长覆盖可见光至中红外(703~4 014 nm)的宽带超连续谱。这一结果对于促进片上集成宽带光源在生物医学等领域的应用具有重要作用。
超连续谱(Supercontinuum,SC
另一方面,当前硅基光电子学迅速发展,光子集成平台日趋成熟,各种功能新颖的高性能片上光子集成器件不断涌现,在此背景下,研发一种高性能片上集成宽带SC光源,对于提高现有OCT设备性能、缩小体积/重量、降低功耗具有重要意义。当前片上光源主要分三种途径实
Si3N4是光子集成领域一种很有应用前景的芯片材料,其折射率介于二氧化硅和硅之间,具有较大的能带间隙、高的非线性系数、极宽的光学透明窗口(覆盖可见光至中红外波段)、良好的材料稳定性,以及可忽略的双光子吸收(Two-photon Absorption,TPA)效应,并且与CMOS工艺兼
本文设计了一种面向OCT应用的色散剪裁脊形悬空Si3N4光波导,通过优化波导结构参数,实现了对波导色散、有效模场面积和非线性系数的有效调控。通过注入中心波长为1 300 nm的超短光脉冲进行泵浦,在波导输出端得到覆盖可见光至中红外波段,-50 dB带宽约为3 300 nm的SC,并系统研究了SC谱特性与泵浦参数、波导长度之间的关系,分析了所产生SC的相干性。所设计的片上SC光源在基于OCT的生物医学成像领域具有潜在的应用价值。
所提出的脊形悬空Si3N4波导的横截面如

图1 (a)脊形悬空Si3N4波导截面图;(b)3D图
Fig. 1 (a) Cross-section of ridge overhanging Si3N4 waveguide; (b) 3D plot
色度色散是光波导的一个重要光学参数,包括材料色散和波导色散,可由以下公式决
, | (1) |
其中是波导的有效折射率系数,和分别是光在真空中的波长和速度。材料色散由材料自身决定,不会随波导结构发生变化。一般使用Sellmeier方程来表征,Si3N4的Sellmeier方程如下
, | (2) |
SiO2的Sellmeier方程表示如
, | (3) |
波导的色度色散特性对实现平坦宽带的SC有至关重要的影响,色度色散的重要来源之一是波导色散,其与波导的结构参数密切相关,因此,为了高效产生覆盖目标波段的SC谱,需要设计的波导具有合理的色散特性。基于这一点,下文将逐一分析波导结构参数变化对其色度色散的影响,最终优化得到一个宽带且相对平坦的低色散区。此处采用基于时域有限差分法的软件Lumerical MODE,结合控制变量法,对波导的色散进行数值分析,为确保仿真精度,模拟区域设置为3×3 μm²,网格精度为200×200。
首先,分别分析平板厚度h2和上包层厚度h1变化对波导色散的影响。仿真中,设置W=750 nm、H=500 nm、h1=200 nm固定不变。调节h2在0~250 nm变化,得到结果如

图2 不同波导结构参数:(a)h2;(b)h1;(c)H;(d)W和波长变化对波导色散的共同影响
Fig. 2 Combined effect of different waveguide structural parameters: (a) h2; (b) h1; (c) H; (d) W and wavelength variation on waveguide dispersion
其次,分析脊高H对波导色散的影响,仿真中固定W=750 nm、h1=150 nm,h2=200 nm,设置H变化范围为450~700 nm,波长变化范围为0.7~1.7 μm,得到波导色散随二者的变化关系如
通过上述分析波导结构参数对色度色散的影响,可以看出,波导脊高H、脊宽W对波导的色散影响相对较大,原因在于H和W的变化导致波导中TE模式的有效模场面积发生较大变化,同时该模式的有效折射率也产生较大影响,直接引起波导色度色散的变化。因此,为实现波长覆盖范围满足要求的SC,最终选择波导结构参数为:W=750 nm,H=500 nm,h1=150 nm,h2=200 nm。此时,在0.7~1.7 μm波长区间内,有两个零色散点,色散变化范围为-984.8~+161.32ps/nm/km;其中,短波长侧的零色散波长为0.925 μm,长波长侧的零色散波长为1.51 μm。
在超连续谱产生过程中,除了色度色散对非线性光学效应有影响外,非线性系数γ同样对非线性光学过程有着重要影响。一般来讲,光波导的非线性系数可用以下公式表
, | (4) |
其中,为光波在真空中的角频率,为克尔系数(=2.4× 1
, | (5) |
式中F(x,y)是TE模的矢量电场。对于优化后的光波导,在关注的波长范围0.6~2 μm内,其有效模场面积与非线性系数随波长的变化如

图3 (a)波导有效模场面积、非线性系数随波长的变化;(b)1510nm和925nm处TE模场能量分布图
Fig. 3 (a) The relationship of effective mode field area and nonlinear coefficient of waveguide versus wavelength; (b) Energy distribution of TE mode field at 1510nm and 925nm.
当高峰值功率激光在非线性光波导中传输时,由于自相位调制(Self-phase Modulation,SPM)、交叉相位调制(Cross-phase Modulation,XPM)、四波混频(Four-wave Mixing,FWM)、受激拉曼散射(Stimulated Raman Scattering,SRS)等多种非线性光学效应同时发生,导致在光谱上会产生许多新的频率分量,输出光谱相对输入光谱发生极大展宽,形成SC。光波导中产生SC的过程可以使用广义非线性薛定谔方程(Generalized Nonlinear Schrodinger Equation,GNLSE)来描
, | (7) |
其中,是波导的线性传播损耗,是在输入脉冲的中心频率处的k阶色散系数,表示介质的非线性系数。其中为拉曼响应函数(系数代表拉曼对非线性极化的小数部分贡献)。该方程可以使用四阶龙格-库塔法和分步傅立叶方法相结合进行数值求解。
数值分析过程中,根据优化波导的色散曲线,设置泵浦光中心波长为1 300 nm,此波长对应的有效模场面积为0.658 346 μ
首先分析波导长度L对SC特性的影响。数值分析中设置泵浦光中心波长为1 300 nm,峰值功率为0.5 kW,脉冲宽度为50 fs,改变波导长度从1 mm到10 mm,计算波导长度变化对SC的影响。得到SC的光谱和时域脉冲随波导长度的变化情况分别如

图4 不同波导长度下的(a)输入输出光谱和(b)输入输出时域脉冲波形;(c)光谱随传播长度演变;(d)时域脉冲随传播长度演变
Fig. 4 (a) input-output spectra and (b) input-output time-domain pulse wave forms for different waveguide lengths; (c) spectra evolution with propagation length; (d) time-domain pulse evolution with propagation length
其次,分析脉冲峰值功率对产生SC特性的影响,分析中,固定波导长度为10 mm,泵浦脉冲脉宽为50 fs,分别设置峰值功率为0.1 kW、0.5 kW、1 kW和2 kW,得到不同峰值功率下波导初始输入光谱和经波导传输后的输出光谱如

图5 峰值功率为0.1 kW、0.5 kW、1 kW、2 kW时(a)输入输出光谱随峰值功率演变;(b)光谱随传播长度演变;(c)输入输出时域脉冲波形随峰值功率演变;(d)时域脉冲随传播长度演变
Fig. 5 (a) input-output spectral evolution with peak power, (b) Spectral evolution with propagation length, (c) input-output time-domain pulse waveform evolution with peak power, and (d) Time-domain pulse evolution with propagation length for peak powers of 0.1 kW, 0.5 kW, 1 kW, and 2 kW
相应的在波导输入输出端,时域脉冲波形随泵浦光峰值功率的变化如
接着,分析泵浦脉冲宽度对SC的影响,仿真中设定脉冲峰值功率为0.5 kW,波导长度10 mm,分别设置泵浦脉宽为25 fs、50 fs、100 fs和200 fs。

图6 脉冲宽度为25 fs、50 fs、100 fs、200 fs时(a)不同泵浦脉宽时的输入输出光谱(b)光谱随传播长度演变;(c)输入输出时域脉冲波形随脉冲宽度演变;(d)时域脉冲随传播长度演变
Fig. 6 Evolution of (a) input-output spectra for different pulse width; (b) spectra with propagation length; (c) input-output time-domain pulse wave forms with pulse width; (d) time-domain pulses with propagation length for pulse widths of 25 fs, 50 fs, 100 fs, 200 fs
同时,如
在OCT中,光源带宽决定系统测量的轴向分辨

图7 (a)在P=0.5 kW/1 kW/2 kW,tFWHM=50 fs条件下的相干性与波长的关系;(b)在P=1 kW,tFWHM=25 fs/50 fs/100 fs条件下的相干性与波长的关系
Fig. 7 (a) Coherence plot at P=0.5 kW/1 kW/2 kW, tFWHM=50 fs; (b) Coherence plot at P=1 kW, tFWHM=25 fs/50 fs/100 fs
另一方面,分别分析了当脉冲宽度为25 fs、50 fs和100 fs时对应的SC的相干性,得到结果如
通过比较发现,当泵浦中心波长为1 300 nm,峰值功率为0.5 kW,脉冲宽度为25 fs时,其中心波长处相干性大于0.95且整体相干性相对较高,因此应选择相对具有低峰值功率及窄脉冲宽度的泵浦光,在获得宽光谱范围的同时能够保持其具有较高的相干性。
最后,将本文设计的片上SC光源与文献报道的其他类型片上SC光源进行比较,结果如
结构 | 中心波长/µm | 峰值功率/w | 脉冲宽度/fs | 波导长度/mm | 超连续谱宽/nm |
---|---|---|---|---|---|
201 | 2.2 | 6 000 | 120 | 15 | 630-2 650 |
201 | 2.12 | 12.7 | 200 | 20 | 1 535-2 525 |
201 | 1.3 |
1.6 | 200 | 43 | 665-2 025 |
201 | 1.55 |
1.4 | 105 | 10 | 820-2 250 |
201 | 1.56 | 1 400 | \\ | 1.7 | 1 060-2 200 |
202 | 3.2 | 90 000 | 100 | 5 | 504-4 229 |
202 | 1.3 | 5 | 200 | 50 | 990-1 435 |
202 | 1.55 | 2 000 | 250 | 6 | 500-3 800 |
202 | 1.35 | 5 000 | 50 | 5 | 750-3 001 |
本文工作 | 1.3 | 2 000 | 50 | 10 | 703~4 014 |
基于Si3N4的SC光源在光子集成领域具有重要应用,目前,人们已经采用传统的条形、槽型、脊型光波导结构实现了不同带宽的超连续谱,满足了不同领域的应用需求,但上述SC在中心波长、光谱宽度、功耗等方面仍不能满足实际应用需求。针对这一问题并结合OCT应用场景特点,本文创新性的提出了一种面向OCT应用的脊形悬空Si3N4光波导,其中,悬空结构有效避免了Si3N4波导芯中能量泄漏到基底,降低了光波导的吸收损耗,极大提升了Si3N4波导芯对光场的束缚能力,脊型结构则可以增加波导色度色散调控维度,消除色散对沟槽加工的敏感,提升制造公差,并有效减少了波导的弯曲损耗。通过时域有限差分法对该波导的主要结构参数进行了优化,得到当Si3N4脊宽W=750 nm、脊高H+h2=700 nm和SiO2上覆层高h1=150 nm时,该波导在可见光到中红外的宽光谱区域内呈现相对低而平坦的色散。基于该脊形悬空光波导,数值分析了在不同峰值泵浦功率、脉冲宽度和波导长度对产生的SC特性的影响。结果表明:基于所设计的10 mm长脊形悬空Si3N4光波导,当泵浦波长为1 300 nm(处于反常色散区)、峰值功率为2 kW、脉宽为50 fs时,在该光波导输出端产生了-50 dB谱宽为3 311 nm(703~4 014 nm,覆盖可见光到中红外波段)的超宽带相干SC,其中心波长处相干性约0.7。本文所设计的片上超宽SC光源相较于已报道的SC光源,扩展了覆盖1 300 nm波段的片上SC光源应用的可能,并且在光通信、光传感、生物医学成像、和中红外环境监测等领域具有重要应用。
References
KLENNER A, MAYER A S, JOHNSON A R, et al. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguide[J]. Optics Express, 2016, 24(10): 11043-11053. [百度学术]
WALDBURGER D, MAYER A S, ALFIERI C, et al. Tightly locked optical frequency comb from a semiconductor disk laser[J]. Optics Express, 2019, 27(3): 1786-1797. [百度学术]
SMIRNOV S V, ANIA-CASTANON J D, ELLINGHAM T J, et al. Optical spectral broadening and supercontinuum generation in telecom applications[J]. Optical Fiber Technology, 2006, 12(2): 122-147. [百度学术]
SOTOBAYASHI H, CHUJO W, KITAYAMA K I, et al. Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels×10 Gbits/s) [J]. Journal of the Optical Society of America B, 2002, 19(11): 2810-2816. [百度学术]
MARTINEZ R A, GUO Kai-Wen, ZHAI Tian-Qu, et al. Active mid-wave to long-wave supercontinuum FTIR sensor for standoff chemical detection [J]. Journal of Lightwave Technology, 2019, 37(14): 3626-3636. [百度学术]
JONES D J, DIDDAMS S A, RANKA J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639. [百度学术]
ISOBE K, WATANABE W, MATSUNAGA S, et al. Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source[J]. Japanese Journal of Applied Physics, 2005, 44(5): 167-169. [百度学术]
ALEXANDER V V, DENG H, ISLAM M N, et al. Non-contact surface roughness measurement of crankshaft journals using a super-continuum laser, San Jose, 2010[C]. IEEE: 2010 Laser Science to Photonic Applications, 2010. [百度学术]
DANIEL L, MARKS, AMY L, et al. Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography[J]. Optics Letters, 2002, 27(22): 2010-2012. [百度学术]
TANG Tao, ZHAO Chen, CHEN Zhi-Yan, et al. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials[J]. Acta Physica Sinica (唐弢, 赵晨, 陈志彦, 等. 超高分辨光学相干层析成像技术与材料检测应用[J]. 物理学报), 2015, 64(17): 174201. [百度学术]
ZORIN I, GATTINGER P, EBNER A, et al. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources[J]. Optics Express, 2022, 30(4): 5222-5254. [百度学术]
KOWALEVICZ A M, KO T, HARTL I, et al. Ultrahigh resolution optical coherence tomography using a super luminescent light source[J]. Optics Express, 2002, 10(7):349-353. [百度学术]
ANDREAS W, MERLE S S, VERENA B, et al. Micro-optical coherence tomography for high-resolution morphologic imaging of cellular and nerval corneal micro-structures[J]. Biomedical Optics Express, 2020, 11(10): 5920-5933. [百度学术]
ZHU Yuan-Hao, WEN Shu-Yu, HE Li, et al. Research progress of silicon light sources in the Post-Moore Era [J]. Micro/nano Electronics and Intelligent Manufacturing (朱元昊, 温书育, 何力, 等. 后摩尔时代硅基片上光源研究进展[J]. 微纳电子与智能制造), 2021, 3(1): 136-149. [百度学术]
ANGULO BARRIOS C, LIPSON M. Electrically driven silicon resonant light emitting device based on slot-waveguide [J]. Optics Express, 2005, 13(25): 92-101. [百度学术]
VINH N Q, HA N N, GREGORKIEWICZ T. Photonic properties of Er-doped crystalline silicon [J]. Proceedings of the IEEE, 2009, 97(7): 1269-1283. [百度学术]
WANG Xu-Jun, NAKAJIMA T, ISSHIKI H, et al. Fabrication and characterization of Er silicates on SiO2/Si substrates[J]. Applied Physics Letters, 2009, 95(4): 041906. [百度学术]
ROELKENS G, VAN THOURHOUT D, BAETS R, et al. Laser emission and photodetection in an InP/In-GaAsP layer integrated on and coupled to a Silicon-on-insulator waveguide circuit [J]. Optics Express, 2006, 14(18): 8154-8159. [百度学术]
NORMAN J C, JUNG D, ZHANG Z, et al. A review of high-performance quantum dot lasers on silicon [J]. IEEE Journal of Quantum Electronics, 2019, 55(2): 1-11. [百度学术]
WOLKIN M V, JORNE J, FAUCHET P M, et al. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen [J]. Physical Review Letters, 1999, 82(1): 197-200. [百度学术]
GELLOZ B, KOJIMA A, KOSHIDA N. Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing [J]. Applied Physics Letters, 2005, 87(3): 031107. [百度学术]
ABSTREITER G, EBERL K, FRIESS E, et al. Silicon/germanium strained layer superlattices [J]. Journal of Crystal Growth, 1989, 95(1): 431-438. [百度学术]
BOYRAZ O, INDUKURI T, JALALI B, et al. Self-phase-modulation induced spectral broadening in silicon waveguides[J]. Optics Express, 2004, 12(5): 829-834. [百度学术]
KARIM M R, KAYED A N, NUSRAT J, et al. Study of highly coherent mid-infrared supercontinuum generation in CMOS compatible Si-rich SiN tapered waveguide[J]. Journal of Lightwave Technology, 2022, 40(13): 4300-4310. [百度学术]
DIOUF M, LUCIEN M M, TCHAWOUA C, et al. Numerical investigation of supercontinuum generation through AsSe2/As2S5 chalcogenide photonic crystal fibers and rib structures[J]. Journal of Lightwave Technology, 2019, 37(22): 5692-5698. [百度学术]
EPPING J P, HOEKMAN M, MATEMAN R. High confinement, high yield Si3N4 waveguides for nonlinear optical applications[J]. Optics Express, 2015, 23(2): 642-648. [百度学术]
MOSS D J, MORANDOTTI R, LIPSON M. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics[J]. Nature Photonics, 2013, 7: 597-607. [百度学术]
ATABAKI A H, MOAZENI S, PAVANELLO F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 2018, 556: 349-354. [百度学术]
HAN Xu, JIANG Yong-Heng, FRIGG A, et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator Platform[J]. Laser Photonics Reviews, 2021, 16(1): 584-587. [百度学术]
ZHAO Ying-Xuan, et al. Low-loss and broadband polarization splitter and rotator and its application in DWDM receiver, USA, 2017[C]. IEEE: IEEE Photonics Conference, 2017. [百度学术]
ROMERO G S, MERGET F, ZHONG F, et al. Silicon nitride CMOS compatible platform for integrated photonics applications at visible wavelengths[J]. Optics Express, 2013, 21(12): 14036-14046. [百度学术]
ZHANG Hui-Juan, LI Chao, TU Xiao-Guang, et al. High efficiency silicon nitride grating coupler[J]. Applied Physics A, 2014, 115(1): 79-82. [百度学术]
LAMY M, FINOT C, PARRIAUX A, et al. Si-rich Si nitride waveguides for optical transmissions and toward wavelength conversion around 2μm[J]. Applied Optics, 2019, 58(19): 5165-5169. [百度学术]
OOI K J A, NG D K T, WANG T, et al. Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge[J]. Nature Communications, 2017, 8: 13878. [百度学术]
YE Z, FÜLÖP A, HELGASON Ò, et al. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics[J]. Optics Letters, 2019, 44(13): 3326-3329. [百度学术]
ZHAO Hao-lan, KUYKEN B, CLEMMEN, et al. Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide[J]. Optics Letters, 2015, 40(10): 2177-2180. [百度学术]
SCHMID G F. Axial and peripheral eye length measured with optical low coherence reflectometry[J]. Journal of Biomedical Optics, 2003, 8(4): 655-662. [百度学术]
YAMANAKA M, KAWAGOE H, NISHIZAWA N, et al. High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band[J]. Applied Physics Express, 2016, 9(2):022701. [百度学术]
YAMANAKA M, TERANISHI T, KAWAGOE H, et al. Optical coherence microscopy in 1700nm spectral band for high-resolution label-free deep-tissue imaging[J]. Scientific Reports, 2016, 6: 31715. [百度学术]
KANG Ji-Qiang, FENG Ping-Ping, WEI Xiao-Ming, et al. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography[J]. Optics Express, 2018, 26(4): 4370-4381. [百度学术]
LEITGEB R, HITZENBERGER C K, FERCHER A F. Performance of fourier domain vs time domain optical coherence tomography[J]. Optics Express, 2003, 11(8): 889-894. [百度学术]
NISHIZAWA N, KAWAGOE H, YAMANAKA M, et al. Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 1-15. [百度学术]
HARTL I, LI X D, CHUDOBA C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Optics Letters, 2001, 26(9): 608-610. [百度学术]
KHANH Q K, NASSER N P, JUSTIN K, et al. Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source[J]. Journal of Biomedical Optics, 2011, 16(10): 106004. [百度学术]
RATHEESH K M, MURUKESHAN V M, LEONG K S. Optical frequency domain imaging with a rapidly swept laser in the 1300nm bio-imaging window, Singapore, 2015[C]. SPIE: International Conference on Optical and Photonic Engineering, 2015. [百度学术]
JI Xing-Chen, MOJAHED D, OKAWACHI Y, et al. Millimeter-scale chip–based supercontinuum generation for optical coherence tomography[J]. Science Advances, 2021, 7(38):8869. [百度学术]
PRADEEP P, NAOMI N, BUATIS J K, et al. High-quality doped polycrystalline silicon using low-pressure chemical vapor deposition (LPCVD)[J]. Energy Procedia, 2018, 150: 9-14. [百度学术]
CHEN Zhi-Hua, LIU Hong-Jun, WANG Zhao-Lu, et al. Phase-sensitive amplification of a QPSK signal using a dispersion engineered silicon-graphene oxide hybrid waveguide[J]. Applied Optics, 2020, 59(7):1801-1807. [百度学术]
LUKE K, OKAWACHI Y, LAMONT M R, et al. Broadband mid-infrared frequency comb generation in a Si3N4 micro-resonator[J]. Optics Letters, 2015, 40(21):4823-4826. [百度学术]
MALITSON I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 1965, 55(10): 1205-1208. [百度学术]
TAN C Z. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy[J]. Journal of Non-Crystalline Solids, 1998, 223(1): 158-163. [百度学术]
ZHANG L, AGARWAL A M. Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared[J]. Nanophotonics, 2013, 3(4): 247-268. [百度学术]
AGRAWAL G. Optics and photonics in nonlinear fiber optics (fifth edition) [M].New York: Academic Press, 2013, 457-496. [百度学术]
JAFARI Z, EMAMI F. Strip/Slot hybrid arsenic tri-sulfide waveguide with ultra-flat and low dispersion profile over an ultra-wide bandwidth[J]. Optics Letters, 2013, 38(16): 3082-3085. [百度学术]
IKEDA K, SAPERSTEIN R E, ALIC N, et al. Thermal and kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides[J]. Optics Express, 2008, 16(17): 12987-12994. [百度学术]
ZHU Ming, LIU Hong-Jun, LI Xue-Feng, et al. Ultra-broadband flat dispersion tailoring of dual-slot silicon waveguides[J]. Optics Express, 2012, 20(14): 15899-15907. [百度学术]
LI Pan, SHI Lei, MAO Qing-He. A fourth-order runge-kutta in the interaction picture algorithm for simulating coupled generalized nonlinear schrödinger equation and its error analysis[J]. [百度学术]
Acta Physica Sinica (李磐, 时雷, 毛庆和. 耦合广义非线性薛定谔方程的相互作用表象龙格库塔算法及其误差分析[J]. 物理学报, 2013, 62(15): 154-205. [百度学术]
DULKEITH E, VLASOV Y A, CHEN X G, et al. Self-phase-modulation in submicron silicon-on insulator photonic wires [J]. Optics Express, 2006, 14(12):5524-5534. [百度学术]
DUDLEY J M, GENTY G, COEN S. Supercontinuum generation is photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135–1184. [百度学术]
SCHREIBER T, ANDERSEN T V, SCHIMPF D, et al. Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths[J]. Optics Express, 2005, 13(23): 9556-9569. [百度学术]
POVAZAY B, BIZHEVA K, UNTERHUBER A, et al. Submicrometer axial resolution optical coherence tomography[J]. Optics Letters, 2002, 27(20): 1800-1802. [百度学术]
WANG Yi-Ming, TOMOV I, NELSON J S, et al. Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography[J]. Journal of the Optical Society of America A, 2005, 22(8): 1492-1499. [百度学术]
DUDLEY J M, COEN S. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber[J]. Optics Letters, 2004, 12(11):2423-2428. [百度学术]
PAULSEN H N, HILLIGSE K M, THOGERSEN J, et al. Coherent anti-stokes raman scattering microscopy with a photonic crystal fiber based light source[J].2003, Optics Letters, 28(13):1123-1125. [百度学术]
Lin Zhang, QIANG Lin, YANG Yue, et al. On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(6): 1799 - 1806. [百度学术]
KUYKEN B, LIU X, OSGOOD R M, et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides[J]. Optics Express, 2011, 19(21): 20172-20181. [百度学术]
HALIR R, OKAWACHI Y, LEVY J S, et al. Ultrabroadband supercontinuum generation in a CMOS compatible platform[J]. Optics Letters, 2012, 37: 1685-1687. [百度学术]
LIU Xing, PU Ming-Hao, ZHOU Bin-Bin, et al. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide[J]. Optics Letters, 2016, 41(12): 2719-2722. [百度学术]
ISHIZAWA A, GOTO T, KOU R, et al. Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure[J]. Applied Physics Letters, 2017, 111: 021105. [百度学术]
FANG Yu-Xi, BAO Chang-Jing, WANG Zhi, et al. Three-octave supercontinuum generation using SiO2 cladded Si3N4 slot waveguide with all-normal dispersion[J]. Journal of Lightwave Technology, 2020, 38(13): 3431-3438. [百度学术]
DENG Zhi-Xiang, ZHANG Jin, FAN Dian-Yuan, et al. Parametrically tunable mid-infrared resonant radiation by four-wave mixing in silicon nitride nanophotonic waveguides[J]. Journal of Lightwave Technology, 2022, 40(15): 5236-5244. [百度学术]
ZHANG Jia-Lang, ZHANG Si-Yuan, JIANG Xin-Hua, et al. Numerical study on flat dispersion in a single-layer Si3N4 coupled-waveguides with four zero-dispersion wavelengths for supercontinuum generation[J]. Optics and Laser Technology, 2023, 160: 109061. [百度学术]