摘要
近红外光驱动的太赫兹调制器是太赫兹/红外光纤混合通信系统中的重要组成部分。这里提出了一种基于银纳米颗粒/碳量子点(Ag NPs/CDs)近红外驱动的太赫兹调制器。实验结果表明,银纳米颗粒(Ag NPs)与碳量子点(CDs)的结合会引起纳米颗粒的量子尺寸效应和介电限域效应,利用Ag NPs/CDs可以增强硅基底对近红外光的吸收,从而实现近红外驱动的太赫兹波调制。通过808 nm的近红外调制激励源,对样品进行了0.22~0.33 THz范围内的太赫兹透射特性的表征,与参考硅基片相比,Ag NPs/CDs近红外太赫兹调制器的调制深度可以达到83%左右,显著高于参考硅基片的调制深度(~54%),实现了大调制深度的太赫兹波调制。本研究工作在太赫兹/红外光纤混合通信系统中拥有重要的应用价值。
近年来,位于微波和红外辐射之间的太赫兹波,因其独特的穿透性、安全性、高频率等性质,在成像、国防安全、生物样品检测和无线通信等领域得到了广泛的应
为了增强硅基底的光吸收,提高太赫兹调制器的性能,对新材料、新方法提出了更高要求,纳米材料因为其独特的尺寸效应成为了提高硅基底光吸收的理想材
碳量子点(CDs)的介电常数与金属纳米颗粒有较大差别,这使得CDs具有优异的光电性能,在生物成像、生物传感
实验选取3 mg水溶性的碳量子点(CDs),溶解于1 ml去离子水中;将CDs溶液在室温下搅拌约15 min,得到CDs溶液。1 mg硝酸银(AgNO3)溶于1 ml去离子水中;将AgNO3溶液加入CDs溶液中,室温下搅拌15 min,在254 nm紫外光照射15 min下制备成银纳米颗粒/碳量子点(Ag NPs/CDs)共混溶液。超声清洗硅片,并用氮气将硅片吹干,置于热台上。然后取适量合成所得的Ag NPs/CDs溶液,滴涂于硅片的中心区域,55 ℃加热至溶剂蒸发,制备得到Ag NPs/CDs近红外驱动的太赫兹调制器。
太赫兹波的调制实验采用了矢量网络分析仪(VNA)(Keysight Technologies, Inc., Santa Rosa, CA, USA)和两台毫米波扩频模块(Virginia Diodes, Inc. Charlottesville, VA, USA),使用808 nm波长的近红外激光器作为外部激励源。将参考硅基片和银纳米颗粒/碳量子点(Ag NPs/CDs)近红外驱动的太赫兹调制器分别置于样品夹上,然后调控激光器功率,采集不同功率下该器件的太赫兹辐射调制性能数据。
为了探究Ag NPs/CDs的结构特性,对紫外光照下合成的Ag NPs/CDs进行了透射电子显微镜(TEM)表征。

图1 (a)紫外光照下合成Ag NPs/CDs的三维模型,(b)Ag NPs纳米颗粒对应的粒径分布图,(c)Ag NPs/CDs的TEM图,(d)CDs纳米颗粒对应的粒径分布图
Fig. 1 (a) Three-dimensional model for the synthesis of Ag NPs/CDs under UV illumination, (b) particle size distribution map corresponding to Ag NPs nanoparticles, (c) TEM map of Ag NPs/CDs, (d) particle size distribution map corresponding to CDs nanoparticles
为了更好地展示Ag NPs/CDs在近红外波段的光吸收现象,我们使用紫外可见分光光度计(UV-Vis)对CDs溶液、Ag NPs溶液和Ag NPs/CDs溶液的吸收光谱范围进行了对比测试,结果如

图2 (a)Ag NPs/CDs与CDs和Ag NPs的UV-Vis吸收光谱对比图,(b)CDs(左)和Ag NPs/CDs(右)的相应溶液图片,(c)Ag NPs/CDs调制器结构模型图,(d)808 nm近红外光照射下,Ag NPs/CDs调制器的电场分布
Fig. 2 (a) UV-Vis absorption spectra of Ag NPs/CDs compared with CDs and Ag NPs, (b) corresponding solutions of CDs (left) and Ag NPs/CDs (right), (c) structure model of Ag NPs/CDs modulator, (d) electric field distribution of Ag NPs/CDs modulator under near infrared irradiation at 808 nm
此外,为了更好地说明Ag NPs/CDs结构对硅基底光吸收的影响,使用有限元时域差分法(FDTD)对银纳米颗粒/碳量子点(Ag NPs/CDs)近红外驱动的太赫兹调制器进行了模拟。
通过对银纳米颗粒/碳量子点的吸收光谱以及表面电场分布的分析,我们把Ag NPs/CDs近红外吸收增强归因于量子尺寸效应和介电限域效应。首先,通过
为了更好地展示Ag NPs/CDs近红外驱动的太赫兹调制器的调制效果,对Ag NPs/CDs近红外驱动的太赫兹调制器在0.22~0.33 THz波段进行了太赫兹传输特性测试。

图3 (a)808 nm激光调制Ag NPs/CDs调制器的太赫兹实验示意图,在不同功率的激光辐射调制下,太赫兹波透过(b)参考硅片和(c)Ag NPs/CDs调制器的归一化太赫兹波透过率
Fig. 3 (a) The schematic diagram of terahertz experiments with 808 nm laser modulation of Ag NPs/CDs modulator, terahertz wave transmission under laser radiation modulation with different powers, (b) reference silicon wafer and (c) normalized terahertz wave transmission of Ag NPs/CDs modulator
参考硅基片与Ag NPs/CDs调制器在0.22~0.33 THz波段的太赫兹波传输特性如
为了更直观地显示随着激光功率增加Ag NPs/CDs调制器的太赫兹波衰减情况,利用 对测得的太赫兹波透射率进行归一化处理。其中,和分别是激光照射时(功率为p)和无激光照射时,Ag NPs/CDs调制器的太赫兹波透射率。

图4 通过参考硅片和Ag NPs/CDs调制器的太赫兹脉冲在不同功率激光照射下的(a)归一化透射率和(b)调制深度
Fig. 4 (a) Normalized transmittance and (b) modulation depth of terahertz pulses through a reference silicon substrate and Ag NPs/CDs modulator under different power laser irradiations
本文展示了基于银纳米颗粒/碳量子点(Ag NPs/CDs)近红外驱动的太赫兹调制器,利用Ag NPs/CDs结构在硅基底表面制备了Ag NPs/CDs近红外驱动的太赫兹调制器,并对Ag NPs/CDs结构和调制器进行了表征和光控太赫兹波透射特性的实验。结果表明,由于CDs和Ag NPs结合后所具有的量子尺寸效应和介电限域效应,使得Ag NPs/CDs结构可以在近红外波段展现出较好的光吸收特性。在808 nm近红外光的调控下,对Ag NPs/CDs近红外驱动的太赫兹调制器进行了太赫兹传输特性的测试,结果表明,在0.22~0.33 THz的范围内,Ag NPs/CDs近红外驱动的太赫兹调制器的调制深度可达83%,证明了Ag NPs/CDs太赫兹调制器在近红外波段优异的调制性能,在太赫兹/红外光纤混合通信系统中具有重要应用价值。
References
Cui N, Guan M, Xu M, et al. High Electric Field-Enhanced Terahertz Metamaterials with Bowtie Triangle Rings: Modeling, Mechanism, and Carbohydrate Antigen 125 Detection [J]. The Journal of Physical Chemistry C, 2021, 125(35): 19374-19381. [百度学术]
Kleine-ostmann T, Nagatsuma T. A Review on Terahertz Communications Research [J]. Journal of Infrared, Millimeter and Terahertz Waves, 2011, 32(2): 143-171. [百度学术]
Koenig S, Lopez-diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate [J]. Nature Photonics, 2013, 7(12): 977-981. [百度学术]
Zhang Zhen-Zhen, FU Zhang-Long, Wang Chang, et al. Research progress on terahertz quantum well detectors[J]. Journal of Infrared and Millimeter Waves,2022,41(01):103-109. [百度学术]
张真真,符张龙,王长,等。太赫兹量子阱探测器研究进展。红外与毫米波学报,2022,41(01):103-109. 10.11972/j.issn.1001-9014.2022.01.006 [百度学术]
Wei Xiao-Dong, Cai Chun-Feng, Zhang Bing-Po, et al. PbTe mid-infrared photovoltage detector[J]. Journal of Infrared and Millimeter Waves,2011,30(04):293-296. [百度学术]
魏晓东,蔡春峰,张兵坡,等。PbTe中红外光伏探测器。 红外与毫米波学报,2011,30(04):293-296. [百度学术]
LAI W, LIU G, GOU H, et al. Near-IR Light-Tunable Omnidirectional Broadband Terahertz Wave Antireflection Based on a PEDOT:PSS/Graphene Hybrid Coating [J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43868-76. [百度学术]
Kleine-ostmann T, Dawson P, Pierz K, et al. Room-temperature operation of an electrically driven terahertz modulator [J]. Applied physics letters, 2004, 84(18): 3555-7. [百度学术]
Jakhar A, Kumar P, Moudgil A, et al. Optically Pumped Broadband Terahertz Modulator Based on Nanostructured PtSe2 Thin Films [J]. Advanced Optical Materials, 2020, 8(7): 1901714. [百度学术]
Ling Fang, Meng Qing-Long, Huang Ren-Shuai, et al. Multiband modulation characteristics of temperature-controlled terahertz modulators [J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1334-1338 [百度学术]
凌芳, 孟庆龙, 黄人帅, 等。 温控太赫兹调制器多频带调制特性。 光谱学与光谱分析, 2017, 37(5): 1334-1338 [百度学术]
Li Jia-Bin, Wang Xiao-Hua, Wang Wen-Jie. Mechanistic analysis of terahertz graphene electro-optical modulator based on plasma structure [J]. Journal of Infrared and Millimeter Waves,2021,40(2):143-149. [百度学术]
李佳斌,王晓华,王文杰。 基于等离子体结构的太赫兹石墨烯电光调制器的机理分析。 红外与毫米波学报,2021,40(2):143-149. 10.11972/j.issn.1001-9014.2021.02.001 [百度学术]
Lai W, Huang P, Pelaz B, et al. Enhanced All-Optical Modulation of Terahertz Waves on the Basis of Manganese Ferrite Nanoparticles [J]. The Journal of Physical Chemistry C, 2017, 121(39): 21634-21640. [百度学术]
Lai W, Ge C, Yuan H, et al. NIR Light Driven Terahertz Wave Modulator with a Large Modulation Depth Based on a Silicon‐PEDOT:PSS‐Perovskite Hybrid System [J]. Advanced Materials Technologies, 2020, 5(4). [百度学术]
Bai Y, Bu T, Chen K, et al. Review about the optical-controlled terahertz waves modulator [J]. Applied Spectroscopy Reviews, 2015, 50(9): 707-727. [百度学术]
Reinhard B, Paul O, Rahm M. Metamaterial-based photonic devices for terahertz technology [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 19(1): 8500912. [百度学术]
Shi Z W, Cao X X, Wen Q Y, et al. Terahertz modulators based on silicon nanotip array [J]. Advanced Optical Materials, 2018, 6(2): 1700620. [百度学术]
Hochberg M, Baehr-jones T, Wang G, et al. Terahertz all-optical modulation in a silicon–polymer hybrid system [J]. Nature Materials, 2006, 5(9): 703-709. [百度学术]
Lee J, Mahendra S, Alvarez P J. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations [J]. ACS nano, 2010, 4(7): 3580-3590. [百度学术]
Wen T, Zhang D, Wen Q, et al. Enhanced Optical Modulation Depth of Terahertz Waves by Self-Assembled Monolayer of Plasmonic Gold Nanoparticles [J]. Advanced Optical Materials, 2016, 4(12): 1974-1980. [百度学术]
Li Y, Wen T, Zhang D, et al. Comparison Study of Gold Nanorod and Nanoparticle Monolayer Enhanced Optical Terahertz Modulators [J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(5): 484-490. [百度学术]
Zhou R, Wang C, Huang Y, et al. Optically enhanced terahertz modulation and sensing in aqueous environment with gold nanorods [J]. Optics and Lasers in Engineering, 2020, 133. [百度学术]
Yu J-P, Chen S, Fan F, et al. Accelerating terahertz all-optical modulation by hot carriers effects of silver nanorods in PVA film [J]. AIP Advances, 2019, 9(7). [百度学术]
Lai W, Zhu Q, Liu G, et al. Broadband and large-depth terahertz modulation by self-assembly monolayer silver nanoparticle arrays [J]. Journal of Physics D: Applied Physics, 2022, 55(50). [百度学术]
Gao Y, Wu Y, Huang P, et al. Carbon Dot-Encapsulated Plasmonic Core-Satellite Nanoprobes for Sensitive Detection of Cancer Biomarkers via Dual-Mode Colorimetric and Fluorometric Immunoassay [J]. ACS Applied Nano Materials, 2022, 5(8): 11539-11548. [百度学术]
Geng B, Hu J, Li Y, et al. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy [J]. Nature Communication, 2022, 13(1): 5735. [百度学术]
Atabaev T S. Doped Carbon Dots for Sensing and Bioimaging Applications: A Minireview [J]. Nanomaterials (Basel), 2018, 8(5). [百度学术]
Choi H, Ko S-J, Choi Y, et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices [J]. Nature Photonics, 2013, 7(9): 732-738. [百度学术]
Li X, Rui M, Song J, et al. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review [J]. Advanced Functional Materials, 2015, 25(31): 4929-4947. [百度学术]
Dong Y, Yu R, Zhao B, et al. Revival of Insulating Polyethylenimine by Creatively Carbonizing with Perylene into Highly Crystallized Carbon Dots as the Cathode Interlayer for High-Performance Organic Solar Cells [J]. ACS applied materials & interfaces, 2022, 14(1): 1280-1289. [百度学术]
Vallan L, Imahori H. Citric Acid-Based Carbon Dots and Their Application in Energy Conversion [J]. ACS applied electronic materials, 2022, 4(9): 4231-4257. [百度学术]
Jiang X, Jin H, Sun Y, et al. Colorimetric and fluorometric dual-channel ratiometric determination of fungicide cymoxanil based on analyte-induced aggregation of silver nanoparticles and dually emitting carbon dots [J]. Mikrochim Acta, 2019, 186(8): 580. [百度学术]
Li N, Liu T, Liu S G, et al. Visible and fluorescent detection of melamine in raw milk with one-step synthesized silver nanoparticles using carbon dots as the reductant and stabilizer [J]. Sensors and Actuators B: Chemical, 2017, 248: 597-604. [百度学术]
Liu S G, Mo S, Han L, et al. Oxidation etching induced dual-signal response of carbon dots/silver nanoparticles system for ratiometric optical sensing of H2O2 and H2O2-related bioanalysis [J]. Analytica chimica acta, 2019, 1055: 81-89. [百度学术]
Wei X, Cheng F, Yao Y, et al. Facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite for antibacterial application [J]. RSC advances, 2021, 11(30): 18417-18422. [百度学术]
Yang W, Zhang G, Ni J, et al. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots [J]. Mikrochim Acta, 2020, 187(2): 137. [百度学术]
Zhou Q, Liu Y, Wu Y, et al. Measurement of mercury with highly selective fluorescent chemoprobe by carbon dots and silver nanoparticles [J]. Chemosphere, 2021, 274: 129959. [百度学术]
Sahu B, Kurrey R, Khalkho B R, et al. α-Cyclodextrin functionalized silver nanoparticles as colorimetric sensor for micro extraction and trace level detection of chlorpyrifos pesticide in fruits and vegetables [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654. [百度学术]
Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J]. Physical review. B, Condensed matter, 1993, 47(8): 4569-4584. [百度学术]
Yue Lan-Ping, HE Yi-Zhing. Absorption spectroscopic study of germanium nanoparticle mosaic films[J]. Journal of Optics,1997(12):94-97. [百度学术]
岳兰平,何怡贞.纳米锗颗粒镶嵌薄膜的吸收光谱研究[J].光学学报,1997(12):94-97. 10.3321/j.issn:0253-2239.1997.12.019 [百度学术]
Yu Bao-Long, Wu Xiao-Chun, Zou Bing-Lock, et al. Effect of dielectric domain-limiting effect on the optical properties of SnO2 nanoparticles[J]. Journal of Physical Chemistry,1994(2):103-106. [百度学术]
余保龙,吴晓春,邹炳锁,等。 介电限域效应对SnO2纳米微粒光学特性的影响。物理化学学报,1994(2):103-106. 10.3866/PKU.WHXB19940203 [百度学术]
Chalopin Yann, Hayoun Marc, Volz Sebastian, et al. Surface enhanced infrared absorption in dielectric thin films with ultra-strong confinement effects[J]. Applied Physics Letters, 2014, 104, 011905. [百度学术]
Rodina A. V, Efros Al L. Effect of dielectric confinement on optical properties of colloidal nanostructures[J]. Journal of Experimental and Theoretical Physics, 2016, 122(3): 554–566. [百度学术]
Shaganov I I, Perova T S, Melnikov V A, et al. Size Effect on the Infrared Spectra of Condensed Media under Conditions of 1D, 2D, and 3D Dielectric Confinement[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16071–16081. [百度学术]
Lai W., Mazin Abdulmunem O., del Pino P., et al. Enhanced Terahertz Radiation Generation of Photoconductive Antennas Based on Manganese Ferrite Nanoparticles [J]. Scientific Reports , 2017, 7(1): 1-7. [百度学术]