摘要
针对掺铥光纤激光器泵浦源的需求,研制了波长为793 nm的高功率半导体激光芯片和尾纤耦合模块。激光器外延采用了非对称大光腔的波导结构,降低了模式损耗,波导采用无铝的GaInP材料,结合真空解理钝化工艺提高了腔面损伤阈值。通过外延结构和腔面镀膜的优化,研制的激光器单管输出功率达到12 W@11A,在输出功率8 W时通过了300 h老化测试。采用7只单管制备了尾纤耦合模块,耦合至100 μm NA.0.22光纤中,输出功率为40 W@7A,电-光效率为49.5%@40 W。
掺铥光纤激光器在医学、超快光学、眼睛安全、近距离遥感和远程探测系统等方面具有非常良好的应用前景,已经成为人眼安全波长领域光纤激光器的研究热
本文设计并制备了基于GaAsP/GaInP无铝材料体系的793 nm半导体激光器和尾纤耦合模块。在外延方面,通过非对称大光腔的波导结构设计降低了模式损耗,提高了器件斜率效率,器件具有较高的特征温度。在工艺方面,通过腔面真空解理钝化工艺提高了腔面损伤阈值,优化了腔面镀膜的反射率抑制了空间烧孔效应,提高了电-光转换效率。研制的激光器单管输出功率达到12 W@11 A,在输出功率8 W时通过了300 h老化测试。采用7个单管制备了尾纤耦合模块,耦合至100 μm 0.22 NA光纤中,输出功率为40 W@7 A,电-光效率为49.5%@40 W。
采用非对称大光腔外延波导结构的设计,量子阱为GaAsP应变量子,波导层采用无铝的GaInP材料,限制层采用AlGaInP材料。

图1 非对称大光腔外延波导结构设计(a)模场分布计算,(b)波导厚度对斜率效率的影响
Fig. 1 Design of the asymmetric large optical cavity epitaxial structure:(a) Mode calculation results, (b) influence of the waveguide thickness on the slope efficiency
外延片生长完成后,采用湿法腐蚀工艺制成100 μm宽条激光器,通过电子束蒸镀SiO2绝缘膜,制备电注入窗口区,同时形成弱折射率限制。P面金属电极依次为Ti/Pt/Au,N面金属电极为Ni/AuGe/Pt/Au。
对1.55 μm的大光腔波导的掺杂进行优化,如

图2 波导掺杂优化与特征温度测试(a)波导掺杂优化,(b)特征温度测试
Fig. 2 Optimization of waveguide doping and test results of characteristic temperatures (a) Optimization of waveguide doping, (b) test results of characteristic temperatures
为了制备高可靠性793 nm半导体激光器,采用超高真空解理机制成厘米巴条,真空度1×1

图3 腔长为2 mm的单管测试结果(a)P-I和效率曲线,对比了大气解理和真空解理腔面COD,(b)远场发散角测试曲线
Fig. 3 Test results of the 2 mm long single emitter (a) P-I and efficiency curve, (b) far-field curve
为了提高器件的输出功率,将腔长增加至4 mm。由于腔长增加,空间烧孔效应增

图4 腔长为4mm时单管性能优化(a)通过腔面反射率抑制空间烧孔效应,(b)优化后的单管连续电流测试结果
Fig. 4 Improvement of the 4 mm long single emitter (a) suppression of the spatial hole burning effect by optimization of front facet reflectivity, (b) CW power and efficiency test results of the optimized emitter
虽然制备的793 nm单管输出功率可达到12 W,但为了提高器件使用寿命,将输出功率确定在8 W左右。

图5 4 mm腔长单管可靠性测试结果
Fig. 5 Reliability test results of the 4 mm long single emitter
采用7只4 mm腔长的单管串联研制了尾纤耦合模块,尾纤的参数为100 μm 0.22 NA。在注入电流为7 A时输出功率达到了40 W,此时电光效率约49%,测试结果如

图6 尾纤耦合模块功率和光谱测试结果
Fig. 6 Power and spectra test results of the fiber coupling module

图7 尾纤耦合模块可靠性测试结果
Fig. 7 Reliability test results of the fiber coupling module
采用非对称大光腔的波导结构和无铝的GaAsP/GaInP材料,结合真空解理钝化工艺和腔面反射率的优化,研制了波长为793 nm的高功率半导体激光芯片,并制备了尾纤耦合模块。其中激光器单管输出功率达到12 W@11A,在输出功率8 W时通过了300 h老化测试。尾纤耦合模块输出功率为40 W@7A,电-光效率为49.5%@40 W(光纤参数100 μm NA.0.22)。上述研究结果可很好满足掺铥光纤激光器泵浦源的国产化需求。
References
HAN Wen-Guo, YAN Feng-Ping, FENG Ting, et al. High-power thulium-doped fiber laser and its application in biological tissue cutting [J]. Chinese Journal of Luminescence(韩文国, 延凤平, 冯亭,等。 高功率掺铥光纤激光器及其在生物组织切割中的应用。发光学报), 2021, 42(5):9. 10.1109/access.2021.3072403 [百度学术]
TAO Meng-Meng, TAO Bo, YE Jing-Feng, et al. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application[J]. Acta Phys. Sin.,(陶蒙蒙, 陶波, 叶景峰,等。可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用。物理学报, 2020,69(3):034205. 10.7498/aps.69.20191515 [百度学术]
LI Ya-Fan, LIU Kun, LIU Te-Gen, et al. Intracavity gas sensing system based on thulium fiber laser[J]. Acta Photonica Sinica(李亚凡, 刘琨, 刘铁根, 等。 基于掺铥光纤激光器的内腔气体传感系统研究. 光子学报),2021, 50(9):8. [百度学术]
LIU Yin-Zi, XING Ying-Bing, LIAO Lei, et al. 530 W all-fiber continuous-wave Tm-doped fiber laser[J]. Acta Phys. Sin.(刘茵紫, 邢颍滨, 廖雷,等。530 W全光纤结构连续掺铥光纤激光器. 物理学报, 2020, 69(18):7. 10.7498/aps.69.20200466 [百度学术]
Bao L, Wang J, Devito M, et al. Performance and reliability of high power 7xx nm laser diodes[C]. Proceedings-of-SPIE 2011, San Francisco, United States ,2011. doi: 10.1117/12.875842 [百度学术]
Liu G L, Lehkonen S, Li J W, et al. High power and reliable 793nm single emitter and T-bar for thulium-doped fiber laser pumping[C]. Proceedings-of-SPIE 2020,San Francisco,United States ,2020.doi: 10.1117/12.2547345 [百度学术]
Ebert C, Guiney T, Irwin D, et al. New advancements in 793 nm fiber-coupled modules for Th fiber laser pumping, including packages optimized for low SWaP applications[C]. Proceedings-of-SPIE 2016, Baltmore, United States, 2016.doi: 10.1117/12.2223127 [百度学术]
TIAN Jing-Yu, ZHANG Jun, PENG Hang-Yu, et al. 780 nm diode laser source with narrow linewidth for alkali metal vapor laser pumping[J]. Chinese Journal of Luminescence(田景玉, 张俊, 彭航宇, 等。用于碱金属蒸汽激光器泵浦的窄线宽780 nm半导体激光源。发光学报), 2019, 40(9):1123-1129. 10.3788/fgxb20194009.1123 [百度学术]
HE Lin-An, ZHOU Kun, ZHANG Liang, et al. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams.(何林安, 周坤, 张亮,等。 大功率780nm半导体激光器的设计与制备。 强激光与粒子束),2021,33(9):1-5 [百度学术]
Ressel P, Erbert G, Zeimer U, et al. Novel passivation process for the mirror facets of Al-free active-region high-power semiconductor diode lasers[J]. IEEE Photonics Technology Letters, 2005, 17(5):962-964. 10.1109/lpt.2005.846750 [百度学术]
DU Wei-Chuan, GAO Song-Xin, WU De-Yong, et al. Optimization of Facet Reflectivity of 450-nm GaN-Based Semiconductor Lasers[J]. Acta Optica Sinica(杜维川, 高松信, 武德勇, 等。 450 nm GaN基半导体激光器腔面反射率的优化。光学学报), 2019, 39(6):4. 10.3788/aos201939.0614002 [百度学术]