摘要
采用砷离子注入p-on-n平面结技术制备了77 K工作温度下截止波长分别为13.23 μm和14.79 μm、像元中心距为25 μm的甚长波640×512探测器,并对其基本性能和暗电流进行了测试和分析。结果表明,对于截止波长为13.23 μm的甚长波640×512(25 μm),器件量子效率为55%,NETD平均值为21.5 mK,有效像元率为99.81%;对于截止波长为14.79 μm的甚长波640×512(25 μm),器件量子效率为45%,NETD平均值为34.6 mK,有效像元率为99.28%。这两个甚长波器件在液氮温度下的R0A分别为19.8 Ω·c
随着空间应用的持续升温,空间技术的发展牵引了甚长波红外探测器的研制和应用研究,并在太空观测、对地观测以及气象研究等方面得到了越来越多的关注。探测器的响应光谱延拓到甚长波段将对材料的组分均匀性和缺陷密度以及器件的量子效率和暗电流提出了很高的要
汞空位掺杂碲镉汞n-on-p技术由于工艺简单成熟,器件性能稳定可靠而被法国Sofradir、德国AIM以及国内相关研究机构用于碲镉汞红外焦平面器件的研制和生产。Sofradir的O.Gravrand
随后,Sofradi
碲镉汞p-on-n技术由于n型吸收层少子寿命长,使得器件具有约低于汞空位掺杂器件2个数量级的暗电流水平;同时,作为多数载流子的电子迁移率高,使得器件串联电阻较小。因此,该技术特别适用于较大面阵甚长波器件的研制。Sofradir的N. Baier
实验所用的碲镉汞材料通过LPE技术在碲锌镉衬底上生长得到,在生长过程中通过原位掺铟实现n型掺杂,掺杂浓度5×1

图1 碲镉汞p-on-n器件结构示意图
Fig. 1 The schematic diagram of HgCdTe p-on-n device

图2 碲镉汞p-on-n器件的I-V特性
Fig. 2 I-V characteristics of HgCdTe p-on-n device

图3 碲镉汞p-on-n器件的R-V特性
Fig. 3 R-V characteristics of HgCdTe p-on-n device

(a)

(b)
图4 77 K下碲镉汞p-on-n器件归一化光谱响应:(a)Cd组分x为0.205,(b)Cd组分x为0.198
Fig. 4 The normalized spectral response of HgCdTe p-on-n device at 77 K:(a) xCd=0.205, and (b) xCd=0.198
对于Cd组分x为0.205的甚长波640×512(25 μm)探测器,积分时间调节至60 μs,器件达到半阱状态。

图5 77 K下xCd=0.205的甚长波器件响应率灰度图
Fig. 5 Responsivity pixel map for a VLWIR FPA with xCd=0.205 at 77 K

图6 77 K下xCd=0.205甚长波器件NETD直方图
Fig. 6 NETD histogram for a VLWIR FPA with xCd=0.205 at 77 K
Cd组分x为0.198的甚长波640×512(25 μm)探测器达到半阱的积分时间为40 μs。器件响应率灰度图如

图7 77 K下xCd=0.198的甚长波器件响应率灰度图
Fig. 7 Responsivity pixel map for a VLWIR FPA with xCd=0.198 at 77 K

图8 77 K下xCd=0.198甚长波器件NETD直方图
Fig. 8 NETD histogram for a VLWIR FPA with xCd=0.198 at 77 K
为了进一步研究器件性能,以达到半阱状态下的积分时间保持不变,在探测器尚未开启的Gpol点采集噪声值。结合探测器半阱下的噪声测试值,按照
, | (1) |
式中,vn1为探测器半阱下的噪声测试值,vn2为读出电路和测试系统噪声总和,vn3为单纯的器件噪声测试值。
根据半阱下探测器直流电平测试值和积分时间计算得到器件总电流。按照
, | (2) |
式中,vn3理论为器件噪声理论值,q为电子电量,I总为器件总电流,Δf为测试带宽,Tint为积分时间,C为积分电容。

图9 77 K下xCd=0.205的甚长波器件测试噪声与电流散粒噪声分布
Fig. 9 Measured noise and current shot noise distributions for a VLWIR FPA with xCd=0.205 at 77 K

图10 77 K下xCd=0.198的甚长波器件测试噪声与电流散粒噪声分布
Fig. 10 Measured noise and current shot noise distributions for a VLWIR FPA with xCd=0.198 at 77 K
在0FOV条件下,对77 K工作温度下不同组分的甚长波器件进行了暗电流测试。为了减小测试误差,分别采集了半阱状态和短积分时间(10 μs)下的直流电平值,通过半阱状态下器件电平减去10 μs短积分时间下电平计算得到器件的暗电流。
, | (3) |
式中,R0为器件零偏阻抗,A为结面积,kB为玻尔兹曼常数,T为工作温度,Jdark为器件暗电流密度。

图11 77 K下xCd=0.205甚长波器件暗电流灰度图
Fig. 11 2-dimentionnal map of dark current for a VLWIR FPA with xCd=0.205 at 77 K

图12 77 K下xCd=0.205甚长波器件暗电流直方图
Fig. 12 Dark current histogram for a VLWIR FPA with xCd=0.205 at 77 K

图13 77 K下xCd=0.198甚长波器件暗电流灰度图
Fig. 13 2-dimentionnal map of dark current for a VLWIR FPA with xCd=0.198 at 77 K

图14 77 K下xCd=0.198甚长波器件暗电流直方图
Fig. 14 Dark current histogram for a VLWIR FPA with xCd=0.198 at 77 K
将测试获得的不同组分器件R0A值与不同研究机构研制的长波和甚长波器件在液氮温度下R0A值进行汇总比较。如

图15 液氮温度下各研究机构研制的长波和甚长波器件R0A值随截止波长的关系
Fig. 15 The relationship between R0A value and cutoff wavelength of LW and VLW devices developed by various research institutions at liquid nitrogen temperature
对封装在液氮中测杜瓦的Cd组分x=0.205的甚长波640×512(25 μm)探测器前置长波镜头后进行了初步成像演示。经过非均匀性校正和盲元替换,器件成像照片如

图16 77 K下xCd=0.205甚长波器件成像演示
Fig. 16 Imaging demonstration of a VLWIR FPA with xCd=0.205 at 77 K operating temperature
本文采用Cd组分x分别为0.205和0.198的碲镉汞LPE材料,通过砷离子注入p-on-n平面结技术制备了像元中心距为25 μm的甚长波640×512探测器。在液氮温度下对器件响应光谱、基本性能以及暗电流水平进行了测试和分析。结果表明,Cd组分x为0.205的甚长波探测器后截止波长为13.23 μm,响应率非均匀性8.15%,器件量子效率55%,NETD平均值21.5 mK,有效像元率为99.81%;Cd组分x为0.198的甚长波探测器后截止波长为14.79 μm,响应率非均匀性12.64%,器件量子效率45%,NETD平均值34.6 mK,有效像元率为99.28%。77 K工作温度下,截止波长为13.23 μm和14.79 μm的甚长波器件R0A分别为19.8 Ω·c
References
H R Vydyanath, V Nathan. Materials and process issues in the fabrication of high performance VLWIR HgCdTe infrared detectors[J]. Opto-Electronics Review, 2001, 9(1):1-5. [百度学术]
O Gravrand, E De Borniol, S Bisotto, et al. From LWIR to VLWIR FPAs made with HgCdTe at Defir[C] //Proc. of SPIE, 2006, 6361: 636118-1-636118-10. [百度学术]
O Gravrand, L Mollard, C Largeron, et al. Study of LWIR and VLWIR Focal Plane Array Developments Comparison Between p-on-n and Different n-on-p Technologies on LPE HgCdTe [J]. Journal of Electronic Materials, 2009, 38(8): 1733-1740. [百度学术]
M A Kinch, F Aqariden, D Chandra, et al. Minority carrier lifetime in p-HgCdTe [J]. Journal of Electronic Materials, 2005, 34(6): 880-884. [百度学术]
C Leroy, P Chorier, G Destefanis. LWIR and VLWIR MCT technologies and detectors development at Sofradir for space applications [C] //Proc. of SPIE, 2012, 8353: 83532O-1- 83532O-11. [百度学术]
J Ziegler, D Eich, S Hanna, et al. Recent Results of 2-dimensional LW- and VLW- HgCdTe IR FPAs at AIM [C] //Proc. of SPIE, 2010, 7660: 766038-1- 766038-10. [百度学术]
R Wollrab, A Bauer, H Bitterlich, et al. Planar n-on-p HgCdTe FPAs for LWIR and VLWIR Applications [J]. Journal of Electronic Materials, 2011, 40(8): 1618-1623. [百度学术]
K U Gassmann, D Eich, W Fick, et al. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM [C] //Proc. of SPIE, 2015, 9639: 96390P-1- 96390P-9. [百度学术]
M Haiml, D Eich, W Fick, et al. Low dark current LWIR HgCdTe focal plane arrays at AIM [C] //Proc. of SPIE, 2016, 9881: 988116-1- 988116-12. [百度学术]
N Baier, L Mollarda, O Gravrand, et al. Very long wavelength infrared detection with p-on-n LPE HgCdTe [C] //Proc. of SPIE, 2012, 8353: 83532N-1- 83532N-12. [百度学术]
N Baier, C Cervera, O Gravrand, et al. Latest Developments in Long-Wavelength and Very-Long Wavelength Infrared Detection with p-on-n HgCdTe [J]. Journal of Electronic Materials, 2015, 44(6): 3144–3150. [百度学术]
W E Tennant, D Lee, M Zandian, et al. MBE HgCdTe Technology: A Very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic [J]. Journal of Electronic Materials, 2008, 37(3): 1406-1410. [百度学术]
H Lutz, R Breiter, D Eich, et al. Small pixel pitch MCT IR-modules [C] //Proc. of SPIE, 2016, 9819: 98191Y-1- 98191Y-18. [百度学术]
H Lutz, R Breiter, D Eich, et al. Towards ultra-small pixel pitch cooled MW and LW IR-modules [C] //Proc. of SPIE, 2018, 10624: 106240B-1- 106240B-16. [百度学术]
H Lutz, R Breiter, D Eich, et al. Improved high performance MCT MWIR and LWIR modules [C] //Proc. of SPIE, 2019, 11002: 1100216-1- 1100216-13. [百度学术]
A I Dsouza, L C Dawson, C Staller, et al. Large VLWIR Hg1-xCdxTe Photovoltaic Detectors [J]. Journal of Electronic Materials, 2000, 29(6): 630–635. [百度学术]
J Bangs, A Gerrish, A Stevens, et al. Advancements in HgCdTe VLWIR materials [C] //SPIE, 2005, 5783: 223-230. [百度学术]
T Parodos, E A Fitzgerald, A Caster, et al. Effect of Dislocations on VLWIR HgCdTe Photodiodes[J]. Journal of Electronic Materials, 2007, 36(5): 1068-1076. [百度学术]