摘要
太赫兹量子级联激光器作为目前产生太赫兹激光的最有效手段之一,如何提升其性能表现一直是科学界所关注的重点。本篇综述将从光电调控的角度,阐述目前太赫兹量子级联激光器的性能进展。从激光器有源区设计原理开始,介绍几种新的有源区设计,再从谐振腔的角度介绍一系列新的结构,并展示他们对于功率和光束质量的提升。最后,阐述了太赫兹量子级联激光器在偏振调控和频率调谐的最新进展。
频率为0.3 THz到10 THz的电磁波频段通常被称为太赫兹波,是红外和微波的过渡区间,但却因为较难高效地产生、调控、探测太赫兹波,使得这一波段被称为“THz Gap”。直到2002年,Köhler等人成功制造出了太赫兹量子级联激光器(Terahertz quantum-cascade-laser,THz-QCL),在填补“太赫兹带隙”的道路上迈出了重要的一
QCL有源区是通过对多量子阱的能级、散射率、波函数等方面的设计来产生粒子数反转,给所需频率提供增益。有源区通常由分子束外延(Molecular-Beam Epitaxy,MBE)技术生长的材料系统构成,形成多量子阱结构。为了得到太赫兹频段的跃迁能量hv,需要设计合理的电子子能带结
最初QCL采用的是啁啾超晶格(Chirped SuperLattice,CSL)设计,其辐射产生于上子带最低能态到下子带最高能态的跃迁。该结构中电子倾向于在子带内散射而非子带间,因而大量聚集在子带底部,子带顶部占据数较少,从而使子带底部的上辐射态和子带顶部的下辐射态之间形成粒子数反转,产生增益。同时,能态密度理论说明了只有带边态之间的跃迁才能产生光子,也就是设计好的上下辐射态之间,从另一个角度解释了粒子数反转的产生机理。
在CSL的基础上诞生了束缚-连续体模型(Bound-To-Continuum,BTC)。BTC的区别在于将上辐射态从上子带底部的带边态变为了束缚在子带隙中的缺陷
以上两种结构为代表的QCL设计都将注入和提取能级设计在下辐射态以下一个纵模光学声子(LO-phonon)的能量(约为36 meV),从而通过发射LO声子将下辐射态的电子散射到注入能级。但是由于太赫兹波段波长较长、能量较低,很难做到准确地只将下辐射态的电子散射掉,因此无法避免地导致上辐射态的电子也被散射
QCL诞生初期,最高工作温度()仅有几十K,需要使用液氦制冷才能工作。随后几年内这个数值被迅速地推高,超过了77 K,在液氮制冷环境下也能提供百毫瓦级的激光输出。对于QCL的最高工作温度,存在一个经验公式,其中为光子能量,为玻尔兹曼常数。由于太赫兹波能量较小,因此按照这个经验公式太赫兹QCL的最高工作温度始终较低。为了突破这个经验公式,对现有的QCL有源区设计又有了许多改进。在2012年,S. Fathololoumi等人展示了一种最高温度达到199.5 K的太赫兹QCL设
近些年的一些进展已经让我们看到了实现热电制冷,乃至室温下工作的希望。在2020年,Ali Khalatpour等人实现了最高工作温度达到250 K、工作频率为4 THz的便携式太赫兹QC

图1 (a)经过优化后的三量子阱模块结构在设计工作电压下的导带图和电子波函数的模平方,(b)分别使用金和铜制的双金属波导在不同温度下工作的L-I-V曲线,其中的上插图为两种波导阈值电流密度随温度的变化,下插图为铜波导在8k和199.5K时的光谱,图片引用自文献[
Fig. 1 (a) The band conductance diagram and the modulus square of the electron wave function of the optimized three-quantum-well module structure under the designed working voltage, (b) L-I-V curves of metal-metal waveguides made of gold and copper operating at different temperatures respectively. The upper illustration shows the change of threshold current density of the two waveguides as a function of temperature, and the lower illustration shows the spectrum of the copper waveguide at 8 K and 199.5 K. The pictures are quoted from Ref. [
目前双金属波导已经成为太赫兹QCL设计的主流,原因是相对于半绝缘表面激元(Semi-Insulating Surface-Plasmon,SI-SP)波导,双金属波导具有更高的工作温
2009年Amanti等人提出了利用三阶分布反馈(Distributed Feedback,DFB)光栅来调制太赫兹QC
2017年Ali Khalatpour等人在天线耦合三阶DFB的基础上,在每个周期中加入了一个周期性的反射结构,抑制了反向模式,补偿了正向模式,最终实现了激光器的单向发
2018年,Simone Biasco等人提出了一种反馈结构和光提取结构分离的新设

图2 (a)第一行:三阶DFB出射原理;第二行:浅刻蚀光栅k空间波矢矢量图,无法满足出射条件;第三行:深刻蚀光栅k空间波矢矢量图,满足条件可以出射,图片引用自文献[
Fig. 2 (a) Upper: principle of Third-order DFB; middle: k space wave vector diagram of shallow-etched grating, which cannot meet the emission conditions; lower: k space wave vector diagram of deep etching grating, which can be emitted when the conditions are met. The picture is quoted from Ref. [
为了提高表面发射(Surface-Emitting)结构的出射功率,2012年,徐刚毅等人提出了梯度光子异质结(Graded Photonic Heterostructure,GPH)结构,极大地提升了太赫兹QCL的出射效率,功率比当时典型的DFB激光器高4倍,斜率效率高了一个数量

图3 (a)中上图展示了GPH激光器中向两侧递减的光栅周期结构,下图则表现了对应实空间光子能带的变化以及势阱的出现,图片引用自文献[
Fig. 3 (a) The upper shows the grating periodic structure decreasing to both sides in the GPH laser, while the bottom figure shows the corresponding photon band diagram in real space. A potential well has been formed. The pictures are quoted from Ref. [
主振子功率放大器(Master-Oscillator Power-Amplifier,MOPA)结构是一种被广泛应用于近红外二极管激光器和中红外量子级联激光器中的激光器结
2018年,朱欢等人又优化了THz-MOPA-QCL设计,进一步提升了性

图4 (a)太赫兹MOPA器件设计原理图,(b)实际器件的SEM照片,(c)模拟计算得到的腔内激光模式和出射场分布,图片引用自文献[
Fig. 4 (a) The schematic diagram of the Terahertz MOPA device, (b) the SEM photo of the actual device, (c) the cavity laser mode and emission field distribution obtained by simulation. The pictures are quoted from Ref. [
Lehigh大学的Jin Yuan等人将注意放在了垂直腔面发射激光器上,并获得了优异的性能表现。2018年,他们展示了一种混合了二阶和四阶布拉格光栅的表面发射太赫兹激光
2020年,Jin Yuan等人更是突破性地实现了2W峰值功率的相位锁定太赫兹等离子激光器阵

图5 (a)制造的一列二阶-四阶混合DFB激光器的SEM照片,(b)激光器在不同温度下的L-I-V曲线,插图为62 k不同电流密度下激光器的频谱,图片引用自文献[
Fig. 5 (a) The SEM photo of the second-order and fourth-order hybrid DFB lasers, (b) the L-I-V curves of the lasers at different temperatures. The illustration shows the spectrum of the lasers at different current densities at 62 K. The picture is quoted from Ref. [
如今,随着技术的需要,光的偏振调制逐渐成为学术界的焦点。激光的偏振特性在光谱学、传感、偏振成像等领域有着重要作用,然而传统的太赫兹偏振调制一般都是空间光调制,需要外部光学器件,比如双折射晶
这种结构来源于一种耦合光栅。2013年,Lin Jiao等人的工作说明了一种定向耦合结构,能将入射偏振光耦合成表面等离子激元(SPPs)波,具有偏振不变的总转换效率,并保留入射偏振信

图6 (a)“鱼骨型”耦合光栅的示意图,图片引用自文献[
Fig. 6 (a) The schematic diagram of the "fishbone" grating. The picture is quoted from Ref. [
2017年,Xu LuYao将这种正交阵列中的光栅替代为了天线,制成超表面结构并实现了电控可调的太赫兹偏振出
2020年,朱海卿等人将这种“鱼骨型”阵列应用到了先前的MOPA器件
由于传感以及光谱学应用的需求,缺少大范围调谐的激光器也成为了限制太赫兹QCL应用的一个重要因素。传统激光器的调谐方法有些类似于调整弦乐的音高,可通过调整弦的长度和张力改变音高,对应于改变激光模式的和折射率n。通常对折射率的连续变化很难超过1%,因此,主要的调谐方式是改变,一般是通过可变的外腔结构提供可调谐的频率反馈。然而对于太赫兹激光器来说,由于双金属波导的亚波长结构,使腔内外的激光模式匹配度很低,很难将外腔的模式反射回增益介质内。为了克服这个困难,需要一些新的调谐方法以应用到太赫兹激光器上。
2010年,Lukas Mahler等人的工作就展示了一种通过二阶DFB激光器和可动金属放射镜构成外腔结构的调谐方
2009年,Qin Qi等人灵活地运用了双金属波导的亚波长特性,通过横向的耦合实现了连续调

图7 (a)左图为二阶DFB激光器和金属反射镜构成的外腔结构图,右图为DFB腔内模式(红色)、外腔模式(绿色)和复合系统(蓝色)的本征频率随反射镜距离变化的函数图像,图片引用自文献[
Fig. 7 (a) The external cavity structure of the second-order DFB laser and the metal mirror is shown on the left, and the intrinsic frequencies of the DFB in-cavity mode (red), the outer cavity mode (green) and the composite system (blue) vary as a function of the distance between the mirror and the cavity. The picture is quoted from Ref. [
之后几年,连续调谐的工作都没有很大进展,直到近几年才开始有突破。2019年,Christopher A. Curwen等人研发的基于量子级联垂直外腔表面发射激光器(QC-VECSEL)结构,实现了大范围的连续调
在太赫兹QCL诞生的20年后,在多个性能表现上已经实现了技术突破:1.通过优化有源区设计,实现了250 K的最高工作温度,进入了热电制冷的工作范围,实现了小型化和便携化;2.瓦量级(2.03 W)的峰值输出,高达1.57 W/A 的斜率效率和2.3%的WPE,验证了双金属波导在输出效率上的优化可能性,以及太赫兹QCL有足够的功率满足各类场景应用;3.可控的偏振态,实现了定向的线偏振、不同角度线偏振之间动态切换、线偏振与圆偏振连续切换,并成功引入到了现有的谐振腔结构中,在不损失性能的同时实现了偏振出射;4.通过超表面和外腔激光器实现了~650 GHz的连续调谐,有助于太赫兹QCL在光谱学等方面的应用。未来,对于有源区结构的进一步优化以及材料生长技术的进步,或许能够实现太赫兹QCL的室温下工作。近年来,许多新颖的概念也逐渐被引入到太赫兹QCL中,如拓扑光子
References
Köhler R, Tredicucci A, Beltram F, et al, Terahertz semiconductor-heterostructure laser [J], Nature, 2002, 417: 156–159. 10.1038/417156a [百度学术]
Chan W L, Deibel J, Mittleman D M, et al, Imaging with terahertz radiation [J], Rep. Progr. Phys, 2007,70: 1325–1379. 10.1088/0034-4885/70/8/r02 [百度学术]
Kim S M, Hatami F, Harris, J S, et al, Biomedical terahertz imaging with a quantum cascade laser [J], Appl. Phys. Lett, 2006, 88: 81–83. 10.1063/1.2194229 [百度学术]
Nguyen K L, Johns M L, Gladden L F, et al, Three-dimensional imaging with a terahertz quantum cascade laser [J], Opt. Express, 2006, 14: 2123–2129. 10.1364/oe.14.002123 [百度学术]
Lee Alan W M, Qin Q, Kumar S, et al, Real-time terahertz imaging over a standoff distance (>25 meters) [J], Appl. Phys. Lett, 2006, 89: 4–7. [百度学术]
Hu Q, Terahertz quantum cascade lasers and video-rate THz imaging [J], IEEE Trans. Terahertz Sci. Technol, 2009, 2: 120–130. 10.1109/drc.2009.5354977 [百度学术]
Mittleman D M, Jacobsen R H, Neelamani R, et al, Gas sensing using terahertz time-domain spectroscopy [J], Appl. Phys. B Lasers Opt, 1998, 67: 379–390. 10.1007/s003400050520 [百度学术]
Federici J F, Schulkin B, Huang F, et al, THz imaging and sensing for security applications—Explosives, weapons and drugs. Semicond [J], Sci. Technol, 2005, 20: S266–S280. 10.1088/0268-1242/20/7/018 [百度学术]
Ren Y, Hovenier J N, Higgins R, et al, High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz [J], Appl. Phys. Lett, 2011, 98:231109. [百度学术]
Koenig S, Lopez-Diaz D, Antes J, et al, Wireless sub-THz communication system with high data rate [J], Nature Photon, 2013, 7: 977–981. 10.1038/nphoton.2013.275 [百度学术]
Kleine-Ostmann T, Nagatsuma T, A review on terahertz communications research [J], Infrared. Millim. THz Waves, 2011, 32: 143–171. 10.1007/s10762-010-9758-1 [百度学术]
Chen Z, Tan Z Y, Ha Y J, et al, Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector [J], Electron. Lett, 2011, 47: 1002–1004. [百度学术]
Ren Y, Hovenier J N, Higgins R, et al, Terahertz heterodyne spectrometer using a quantum cascade laser [J], Appl. Phys. Lett, 2010, 97: 10–13. 10.1063/1.3502479 [百度学术]
Kloosterman J L, Hayton D J, Ren Y, et al, Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator [J], Appl. Phys. Lett, 2013, 102: 011123. [百度学术]
Hayton D J, Kloosterman J L, Ren Y, et al, A 4.7 THz heterodyne receiver for a balloon borne telescope [C], Proc. SPIE, 2014, 9153: 91531R. [百度学术]
Nguyen DT, Simoens F, Ouvrier-Buffet J L, et al, Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements [J], IEEE Trans. Terahertz Sci. Technol, 2012, 2: 299-305. 10.1109/tthz.2012.2188395 [百度学术]
Richter H, Wienold M, Schrottke L, et al, 4.7-THz Local Oscillator for the GREAT Heterodyne Spectrometer on SOFIA [J], IEEE Trans. Terahertz Sci. Technol, 2015, 5: 539-545. [百度学术]
Williams B S, Terahertz quantum-cascade lasers [J], Nature Photon, 2007, 1: 517-525. 10.1038/nphoton.2007.166 [百度学术]
Faist J, Beck M, Aellen T, et al, Quantum-cascade lasers based on a bound-to-continuum transition [J], Appl. Phys. Lett, 2001, 78: 147–149. 10.1063/1.1339843 [百度学术]
Scalari G, Ajili L, Faist J, et al, Far-infrared (λ87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K [J], Appl. Phys. Lett, 2003, 82: 3165–3167. [百度学术]
Xu B, Hu Q, Melloch M R, Electrically pumped tunable terahertz emitter based on intersubband transition [J], Appl. Phys. Lett, 1997, 71:440–442. 10.1063/1.119572 [百度学术]
Williams B S, Xu B, Hu Q, et al, Narrow-linewidth terahertz intersubband emission from three-level systems [J], Appl. Phys. Lett, 1999, 75: 2927–2929. 10.1063/1.125192 [百度学术]
Fathololoumi S, Dupont E, Chan C W I, et al, Terahertz quantum cascade lasers operating up to similar to 200 K with optimized oscillator strength and improved injection tunneling [J], Opt. Express, 2012, 20: 3866-3876. [百度学术]
Khalatpour Ali, Paulsen A K, Deimert C, et al, High-power portable terahertz laser systems [J], Nature Photon, 2020, 15: 16. 10.1038/s41566-020-00707-5 [百度学术]
Williams B S, Kumar S, Hu Q, et al, Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode [J], Opt. Express, 2005, 13: 3331–3339. [百度学术]
Williams B S, Kumar S, Hu Q, et al, High-power terahertz quantum cascade lasers [J], Electron. Lett, 2006, 42: 89–91. 10.1049/el:20063921 [百度学术]
Scalari G, Hoyler N, Giovannini M, et al, Terahertz bound-to-continuum quantum cascade lasers based on optical-phonon scattering extraction [J], Appl. Phys. Lett, 2005, 86: 181101. 10.1063/1.1920407 [百度学术]
Kohen S, Williams B S, Hu Q, Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators [J], Appl. Phys, 2005, 97: 053106 . 10.1063/1.1855394 [百度学术]
Amanti M I, Fischer M, Scalari G, et al, Low-divergence single-mode terahertz quantum cascade laser [J], Nature Photon, 2009, 3: 586-590. 10.1038/nphoton.2009.168 [百度学术]
Khalatpour Ali, Reno J L, Kherani N P, et al, Unidirectional photonic wire laser [J], Nature Photon, 2017, 11: 555. 10.1038/nphoton.2017.129 [百度学术]
Khalatpour Ali, Reno J L, Hu Q, et al, Phase-locked photonic wire lasers by π coupling [J], Nature Photon, 2019, 13: 47. 10.1038/s41566-018-0307-0 [百度学术]
Biasco S, Garrasi K, Castellano F, et al, Continuous-wave highly-efficient low-divergence terahertz wire lasers [J], Nat. Commun, 2018, 9: 1122. 10.1038/s41467-018-03440-4 [百度学术]
Xu G Y, Colombelli R, Khanna S, et al, Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures [J], Nat. Commun, 2012, 3: 952. 10.1038/ncomms1958 [百度学术]
Xu G Y, Li L H, Isac N, et al, Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range [J], Appl. Phys. Lett, 2014, 104: 091112. 10.1063/1.4866661 [百度学术]
Wenzel H, Schwertfeger S, Klehr A, et al, High peak power optical pulses generated with a monolithic master-oscillator power amplifier [J], Opt. Lett, 2012, 37: 1826. 10.1364/ol.37.001826 [百度学术]
O’Brien, Welch D F, Parke R, et al, Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier [J], IEEE J. Quantum Electron, 1993, 29: 2052. 10.1109/3.234468 [百度学术]
Troccoli M, Gmachl C, Capasso F, et al, Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality [J], Appl. Phys. Lett, 2002, 80: 4103. [百度学术]
Rauter P, Menzel S, Goyal A K, et al, Master-oscillator power-amplifier quantum cascade laser array [J], Appl. Phys. Lett, 2012, 101: 261117. 10.1063/1.4773377 [百度学术]
Hinkov B, Beck M, Gini E, et al, Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power [J], Opt. Express, 2013, 21: 19180. 10.1364/oe.21.019180 [百度学术]
Zhu H, Wang F F, Yan Q, et al, Terahertz master-oscillator power-amplifier quantum cascade lasers [J], Appl. Phys. Lett, 2016, 109: 231105. 10.1063/1.4969067 [百度学术]
Yu C R, Zhu H, Wang F F, et al, Highly efficient power extraction in terahertz quantum cascade laser via a grating coupler [J], Appl. Phys. Lett, 2018, 113: 121114. 10.1063/1.5041977 [百度学术]
Zhu H, Zhu H Q, Wang F F, et al, Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity [J], Opt. Express, 2018, 26: 1942-1953. 10.1364/oe.26.001942 [百度学术]
Zhu H Q, Zhu H, Yu C R, et al, Modeling and improving the output power of terahertz master-oscillator power-amplifier quantum cascade lasers [J], Opt. Express, 2020, 28: 23239-23250. 10.1364/oe.395227 [百度学术]
Jin Y, Gao L, Chen J, et al, High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings [J], Nat. Cummon, 2018, 9: 1407. 10.1038/s41467-018-03697-9 [百度学术]
Jin Y, Reno J L, Kumar S, et al, Phase-locked terahertz plasmonic laser array with 2W output power in a single spectral mode [J], Optica, 2020, 7: 708-715. [百度学术]
Zhou R J, Ibarra-Escamilla B, Haus J W, et al, Fiber laser generating switchable radially and azimuthally polarized beams with 140mW output power at 1.6 μm wavelength [J], Appl. Phys. Lett, 2009, 95: 191111. [百度学术]
Grady N K, Heyes J E, Chowdhury D R, et al, Terahertz metamaterials for linear polarization conversion and anomalous refraction [J], Science, 2013, 340: 1304–1307. 10.1126/science.1235399 [百度学术]
Cheng Y Z, Withayachumnankul W, Upadhyay A, et al, Ultrabroadband reflective polarization convertor for terahertz waves [J], Appl. Phys. Lett, 2014, 105: 181111. 10.1063/1.4901272 [百度学术]
Fan R H, Zhou Y, Ren X P, et al, Freely tunable broadband polarization rotator for terahertz waves [J], Adv. Mater, 2015, 27: 1201–1206. 10.1002/adma.201404981 [百度学术]
Lin J, Mueller J P B, Wang Q, et al, Polarization-controlled tunable directional coupling of surface plasmon polaritons [J], Science, 2013, 340: 331–334. 10.1126/science.1233746 [百度学术]
Rauter P, Lin J, Genevet P, et al, Electrically pumped semiconductor laser with monolithic control of circular polarization [J], PNAS, 2014, 111: E5623-E5632. 10.1073/pnas.1421991112 [百度学术]
Xu L Y, Chen D G, Curwen C A, et al, Metasurface quantum-cascade laser with electrically switchable polarization [J], Optica, 2017, 4: 468-475. 10.1364/optica.4.000468 [百度学术]
Liang G Z, Zeng Y Q, Hu X N, et al, Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization [J], ACS Photonics, 2017, 4: 517-524. 10.1021/acsphotonics.6b00703 [百度学术]
Zhu H Q, Zhu H, Wang K, et al, Terahertz master-oscillator power-amplifier quantum Cascade laser with controllable polarization [J], Appl. Phys. Lett, 2020, 117: 021103. 10.1063/5.0013505 [百度学术]
Mahler L, Tredicucci A, Beltram F, et al, Tuning a distributed feedback laser with a coupled microcavity [J], Opt. Express, 2010, 18: 19185-19191. 10.1364/oe.18.019185 [百度学术]
Qin Q, Williams B S, Kumar S, et al, Tuning a terahertz wire laser [J], Nature Photon, 2009, 3: 732-737. 10.1038/nphoton.2009.218 [百度学术]
Curwen C A, Reno J L, Williams B S, et al, Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL [J], Nature Photon, 2019, 13: 855. 10.1038/s41566-019-0518-z [百度学术]
Mittal S, Waks E, Quantum cascade laser lives on the edge [J], Nature, 2020, 578: 219-220. 10.1038/d41586-020-00323-x [百度学术]
Yang Y H, Yamagami Y, Yu X B, et al, Terahertz topological photonics for on-chip communication [J], Nature Photon, 2020, 14: 446. 10.1038/s41566-020-0618-9 [百度学术]
Brandstetter M, Liertzer M, Deutsch C, et al, Reversing the pump dependence of a laser at an exceptional point [J], Nat. Commun, 2014, 5: 4034. 10.1038/ncomms5034 [百度学术]
Yang Y, Burghoff D, Hayton D J, et al, Terahertz multiheterodyne spectroscopy using laser frequency combs [J], Optica, 2016, 3: 499-502. 10.1364/optica.3.000499 [百度学术]
Rosch M, Scalari G, Villares G, et al, On-chip, self-detected terahertz dual-comb source [J], Appl. Phys. Lett, 2016, 108: 171104. 10.1063/1.4948358 [百度学术]
Zhao Y R, Li Z P, Zhou K, et al, Active Stabilization of Terahertz Semiconductor Dual-Comb Laser Sources Employing a Phase Locking Technique [J], Laser Photonics Rev, 2021, 15: 2000498. 10.1002/lpor.202000498 [百度学术]
Li H,Yan M, Wan W J, et al, Graphene-Coupled Terahertz Semiconductor Lasers for Enhanced Passive Frequency Comb Operation [J], Adv. Sci, 2019, 6: 1900460. 10.1002/advs.201900460 [百度学术]
Li H, Li Z P, Wan W J, et al, Toward Compact and Real-Time Terahertz Dual-Comb Spectroscopy Employing a Self-Detection Scheme [J], ACS Photonics, 2020, 7: 49-56. 10.1021/acsphotonics.9b01427 [百度学术]