摘要
近红外二区(900~1 880 nm, the Second Near-Infrared Region, NIR-II)荧光宽场显微成像技术是当前大深度活体成像的一大研究热点,在基础研究和临床应用方面都拥有巨大的潜力。对比可见光(360~760 nm)和近红外一区(760~900 nm, the First Near-Infrared Region, NIR-I)的成像,NIR-II荧光宽场显微成像技术在活体层面具有更高的清晰度和更深的组织穿透。在NIR-II宏观成像基础上,对组织微结构清晰成像的需求迫使成像试剂持续发展,成像系统不断精进。目前,NIR-II荧光宽场显微成像技术在脉管显微造影、肿瘤精确分析、炎症准确追踪等生物应用上都获得一系列突破,相关研究对象包含啮齿类动物(如小鼠,大鼠)及灵长类动物(如狨猴,猕猴)等。将来随着仪器商业化和国产化突破,成像试剂安全性逐步提高,NIR-II荧光宽场显微成像应用价值将不断攀升。本文从NIR-II荧光成像的机制及优势展开讨论,综述NIR-II荧光宽场显微成像的系统特点和演进历史,以及其在不同生物模型上活体成像方面的最新探索和前景展望,以期推动NIR-II荧光宽场显微成像技术进一步普及。
荧光成像具备高灵敏度、非侵入性和无辐射的优点,已广泛应用于生命科学研究。荧光成像利用内生荧光(也称自发荧光)或者外加标记探针受激发出的荧光(诱发荧光)来获得图像,主要包括信号激发、信号收集和信号探测三个关键组件。当细胞或组织中加入荧光探针标记物后,特定波长的光源经由激发光路,照射标记物发出荧光。此时,自发荧光往往成为图像背景。接着,激发的荧光信号,通过发射光路的收集、分光、过滤和聚焦,进入光电探测器完成光电转换、信号放大、分析处理,最终完成图像展示。
传统的生物成像窗口为可见光和NIR-I(the First Near-Infrared Region, NIR-I),其中,360~760 nm属于可见光区域,760~900 nm为NIR-I波段。但在可见光和NIR-I波段的成像存在如下限制:首先,由于光在生物组织中传播时受到的吸收和散射作用影响,成像深度和图像信背比(Signal-to-Background Ratio, SBR)不理想,成像的对象常局限于细胞及厚度较薄的组织样品中;其次,生物组织存在自发荧光,往往成为图像背景干扰,也会导致图像信背比降低,目标信号的清晰度下降;第三,可见光和NIR-I荧光的激发光波长更短,光子能量更高,激发光的安全阈值常常较低,而过强的激发光所引起的生物组织吸收会导致组织受损。与可见光和NIR-I荧光成像相比,近红外二区(the Second Near-Infrared Region, NIR-II)荧光成像因其波长较长,在深层活体成像清晰度和激光功率安全方面优势明显。
近年来,NIR-II荧光宽场显微术在高时间分辨率、高空间分辨率、高信背比和大深度组织穿透方面获得突破性发展,这些得益于荧光探针和成像仪器设备的开发和改进。本文介绍NIR-II荧光宽场显微活体成像的机制特点、演进历史和系统进展,以及希望通过介绍其在不同生物模型上的最新应用,展现其临床试验的巨大潜力,使NIR-II荧光宽场显微成像术在基础研究和临床应用上得到更进一步的普及。
传统的硅基传感器对长波长近红外区域的光子透明,因为超过1 100 nm的光子能量低于传统Si基半导体材料的带隙能量。NIR-II探测普遍使用的为900~1 700 nm范围内具有高量子效率的砷化铟镓(InGaAs)传感器,这种传感器原来在工业检测、军事装备、安全防范等领域被广泛使用,也被称为短波红外传感器(Short Wave Infrared Radiation, SWIR)。
伴随着探测器性能的提升和荧光新探针的开发,NIR-II的活体荧光成像迅速成为热

图1 首例NIR-II活体荧光成像,(a)形成生物相容性纳米管交换过程示意图,单壁碳纳米管(SWNTs)(灰色)上的胆酸盐(红色和白色球)被透析并最终被磷脂-聚乙二醇(PL-PEG)取代,(b)光致发光对比激发光谱和交换后的峰红移,(c)小鼠活体(左)明场及(右)近红外光致发光成
Fig. 1 The first NIR-II in vivo fluorescence imaging, (a) schematic of the exchange process to form biocompatible nanotubes.,cholate (red and white balls) on SWNTs (grey) is dialyzed and eventually replaced by phospholipid–polyethylene glycol (PL–PEG), (b) photoluminescence versus excitation spectra and how peaks are redshifted after exchange, (c) the picture (left) and the in vivo NIR-II photoluminescence (right) imaging of mic
尽管NIR-II荧光成像应用日趋广泛,但其成像窗口的定义却并不统一。长期以来,NIR-II在学术界被定义为1 000~1 700 nm。然而,工业领域认可的典型短波红外波段为900~1 700 nm,因为基于InGaAs的探测器可以实现从900 nm到1 700 nm的成

图2 定义并扩展NIR-II窗口为900-1 880 nm,(a)700~2 500 nm内的水分子的吸收光谱,灰色及黑色箭头指出吸收峰,(b-g)1 300~1 400 nm,1 400~1 500 nm,1 500~1 700 nm,1 700~1 880 nm,1 880~2 080 nm,2 080~2 340 nm窗口内近红外生物组织成像的蒙特卡罗方法模拟结果,(h)弹道光子和散射光子在组织中的传播以及荧光成像的信背比示意图,较小光吸收(左)和适当光吸收(右)的生物组织对比
Fig. 2 Perfecting and extending NIR-II window to 900~1 880 nm, (a) the light absorption spectrum of water within 700~2 500 nm, (b-g) the simulation results of NIR bio-tissue imaging via the Monte Carlo method in 1 300~1 400 nm,1 400~1 500 nm,1 500~1 700 nm,1 700~1 880 nm,1 880~ 2 080 nm,and 2 080~2 340 nm, (h) the schematic diagram of light propagation in tissue, the propagation of excited ballistic and diffused emission photons in the bio-tissue with small (left) and moderate (right) light absorption and the resulting SBRs of fluorescence imagin
活体成像研究中,NIR-II的宏观成像不仅可以实现主动脉和微小血管循环检测,也可以实现各类器官的成像,如心、肝、脾、肺、肾、肝、肠、胆道等。但是,组织的微结构观察和检测需要更大倍率的成像系统,以提高生物组织的空间分辨率和对比度,实现生物微结构的清晰成像。
Hongjie Dai院士团队使用808 nm落射荧光激

图3 NIR-II介观成像系统实现脑血管观察,(a)用于脑血管成像的NIR-II荧光成像系统示意图,(b)健康对照小鼠和大脑中动脉闭塞的小鼠脑血管系统的动态 NIR-IIa 荧光成像,(c)NIR-II荧光宽场显微成像法与激光多普勒法血流灌注测试对
Fig. 3 NIR-II cerebrovascular mesoscopic imaging, (a) a schematic of the NIR-IIa imaging system for brain vascular imaging, (b) dynamic NIR-IIa fluorescence imaging of a control healthy mouse and a mouse with MCAO, (c) average blood perfusion measured by the NIR-II method (red) and laser Doppler blood spectroscopy (blue
NIR-II荧光显微成像术,是将短波红外探测器与传统的荧光显微成像系统结合,可以满足微米级分辨率的成像效果。传统的可见光和NIR-I荧光显微成像系统具有高灵敏度、良好的时间分辨率和实时宽场图像的优点,但存在穿透能力低、自发荧光不可忽略和散射导致的空间分辨率低等问题。陈小元教授课题组使用IR-783@BSA荧光探针,比较小鼠脑血管的NIR-I和NIR-II显微成像效果,发现NIR-II窗口脉管更清晰,信背比对比NIR-I窗口更是增强近2倍(

图4 NIR-II和NIR-I显微成像效果对比,NIR-II荧光显微成像表现出两倍的信背比增强,(a)注射IR-783@BSA 1小时后,小鼠大脑的NIR-I和NIR-II窗口离体显微成像,比例尺:50 μm,(b)同一位置NIR-I和NIR-II图像的横截面强度分
Fig. 4 Comparison of NIR-II and NIR-I microscope imaging, NIR-II imaging affords two times enhancement of SBR, (a) ex vivo microscope imaging of mouse brains at 1-hour post-injection of IR-783@BSA at both NIR-I and NIR-II windows, scale bar: 50 μm, (b) cross-sectional intensity profile of NIR-I and NIR-II images at the same locatio
常见NIR-II荧光显微成像技术包括宽场显微术、共聚焦显微术、光片显微技术等。其中,宽场显微技术采用激光宽场照射激发,以二维面阵探测接收荧光信号。共聚焦显微术是利用共聚焦光阑(例如针孔)来减少进入探测器的离焦光,因此增强了对比

图5 波长>1 400 nm 的NIR-II荧光宽场脑血管显微成像,在 (a)150 μm 和(b)650 μm的深度下1 400~1 550 nm和1 500~1 700 nm波段内小鼠脑血管25 x显微成像比较,比例尺:300 μm,(c)不同深度下1 400~1 550 nm波段内25 x脑血管显微成像,比例尺:100 μ
Fig. 5 NIR-II in vivo fluorescence wide-field microscopic vascular imaging beyond 1 400 nm, the comparison of 1 400-1 550 nm and the 1 500-1 700 nm 25 x cerebrovascular microscopic imaging in the mouse at the depth of (a) 150 μm and (b) 650 μm, scale bar: 300 μm, (c) 25 x microscopic imaging in 1 400-1 550 nm at different depths in the mouse brain, scale bar: 100 μ
Hongjie Dai院士团队和钱骏团队先后在宽场显微成像领域做出努力,在实验室搭建荧光宽场显微成像系统,报导了多种生物模型和不同器官功能的研

图6 NIR II-MS 近红外二区活体显微影像系统
Fig. 6 NIR II-MS the second near-infrared region in vivo microscopic imaging system
基于NIR-II荧光成像的大深度、高分辨率等优势,诸多生物医学应用得以开发。其中,活体大深度显微成像不仅能够对脉管系统、组织器官清晰破译,而且能够获取生物体内生命活动细微过程的动态信息,具有对生理和行为动态观察的巨大潜力。随着生物模型从小鼠、大鼠等简单啮齿类动物逐步发展到狨猴、猕猴等复杂灵长类动物,NIR-II荧光宽场显微相关应用逐步逼近临床转化标准。但随着生物体型越来越大,组织深度越来越大,NIR-II荧光宽场成像的系统要求和技术挑战也越来越高。
恶性肿瘤与脑血管疾病是人类健康的两大威胁。中风、癌症等疾病中的异常血流通常会导致缺氧,因此,大脑中血流量的量化至关重要。常规测量血流的方法,要么缺乏解析单个毛细血管分辨率的能力,要么成像速度太慢无法获取大量的血流信息。NIR-II荧光宽场显微系统提供高时间分辨率和高空间分辨率,足以实现脑血管实时解析成

图7 实时、高分辨NIR-II脑血管成像,(a)使用NIR-II量子点实现脑血管成像及其与双光子荧光成像的对比,比例尺:左上,1 500 μm,左下,330 μm,右,200 μm,(b)5 x,25 x,70 x小鼠的活体NIR-II荧光显微脑血管成像,比例尺:5x成像,100 μm,25x成像,100 μm,70x成像,50 μm
Fig. 7 Real-time and high-resolution NIR-II microscopic imaging of brain vessels, (a) intravital imaging of cerebral vasculatures using QD composite particles and the comparison with the two-photon microscopy (2PM
血管造影方法可提供血管状态的有用信息,用于监测疾病过程,如脑血栓前后的血管结构变化及血流动力学改变。这有助于癌症和心血管疾病的早期诊断和治疗。然而,目前活体细小脉管系统和血流动力学的监测方法差强人意。例如,计算机断层扫描和磁共振成像分辨特征只能低至100 μm量级,并且扫描时间长、后处理复杂、数据记录困难。NIR-II荧光宽场显微成像技术能以高时空分辨率实现深层组织血管可视化,是解决此类问题的更优方案。钱骏教授及唐本忠院士课题组开发了一种近红外聚集诱导发射 (Aggregation-Induced Emission ,AIE)纳米颗

图8 NIR-II荧光宽场显微成像系统用于血流动力学研究和小鼠脑血栓性缺血的实时跟踪,(a)上:对于一个随机挑选的信号点,记录下它随时间变化在血管(血管直径为4.4 μm)中的位置变化,并绘制位置时间函数曲线图,下:左图为双光子激发诱导脑血栓性缺血的示意图,右图为鼠脑血管的NIR-II荧光显微成像结果,(i)为血栓形成前;(ii)为血栓形成后,(iii)和(iv)分别为(i)(ii)的伪彩色图,(b)静脉注射IR-820后小鼠的NIR-II荧光宽场显微成像结果,左为血栓形成前;右为MCAO血栓形成
Fig. 8 Study of hemodynamics utilizing NIR-II fluorescence microscopic imaging and monitoring of thrombotic ischemia in the mouse brain in real-time, (a) upper: changing of locations of a randomly chosen point signal in a blood capillary in time (diameter = 4.4 µm) with a curve of position as a function of time plotted on a graph, lower: on the left is a schematic diagram illustrating the two-photon excitation induced PTI, on the right is the NIR-II fluorescence microscopic images of brain blood vessels before (i) and after (ii) PTI induction, while (iii) and (iv) are just the heat maps of (i) and (ii) respectively, (b) NIR-II fluorescence microscopic images of brain blood vessels from a mouse intravenously injected with IR-820, while images on the left are the normal brain, images on the right are the brain with MCAO
肿瘤和炎症性病变的检测和诊断仍是临床的巨大挑战,而NIR-II荧光宽场显微系统亦可用于肿瘤的精准检测。Bawendi院士课题

图9 NIR-II活体肿瘤显微成像系统,(a)NIR-II荧光显微系统示意图,(b)CT26 肿瘤基质和血管的双色NIR-II荧光显微图像,红色:CEAF-OMe(50 μM, 50 μL),λex/λem = 940/1 200~1 700 nm;绿色:ICG(50 μM, 50 μL),λex/λem = 730/1 000~1 700 nm,比例尺:25 µm,(c)沿着(b)中白色虚线的横截面强度分
Fig. 9 In vivo NIR-II microscopic tumor imaging, (a) the schematic diagram of NIR-II fluorescence microscopy system (b) two-color NIR-II fluorescence microscopic image of CT26 tumor stroma and vessel, red: CEAF-OMe (50 μM, 200 μL), λex/λem = 940/1 200~1 700 nm, green: ICG (50 μM, 50 μL), λex/λem = 730/1 000~1 700 nm, scale bar: 25 μm, (c) cross-sectional intensity profile along the white dashed line in (b
此外,NIR-II荧光宽场显微系统也可以进一步监测肿瘤的高渗透长滞留效应(Enhanced Permeability and Retention, EPR)。唐本忠院士、钱骏教授

图10 使用NIR-II荧光成像在肿瘤部位原位显示高渗透长滞留(EPR)效应,(a)用于活体荧光显微成像的荷瘤小鼠的照片。左边是旧肿瘤,右边是新肿瘤,(b)显示肿瘤部位显微成像的照片,(c)EPR 效应的示意图,(d)荧光显微成像术,用于可视化不同时间点新旧肿瘤中的 EPR 效应,深度 = 180 μm, 比例尺表示 100 μ
Fig. 10 In situ NIR-II fluorescence imaging of the enhanced permeability and retention (EPR) effect in tumor sites, (a) a photograph of the tumor sites on a tumor mouse used for in vivo microscopic imaging, the left is an old tumor while the right is a new one, (b) another photograph to show the microscopic imaging on tumor sites, (c) the schematic diagram to illustrate the EPR effect, (d) visualization of EPR effect in an old and new tumor at different time via NIR-II fluorescence microscopic imaging, depth = 180 μm, the scale bar indicates 100 μ
生物医学研究中,一般通过制作病理切片来研究纳米颗粒在炎症部位蓄积作用。但是,病理切片需要进行机器脱水,切片的过程会损失并破坏聚集纳米颗粒的分布。王强斌教授课题组,使用纳米探针A&MMP@Ag2S-AF7P,对比NIR-II荧光宽场显微成像术和传统标准H&E染色方法,发现两种方法在癌组织上可以实现肿瘤区域的精确共定位(

图11 使用NIR-II荧光宽场显微术实现离体肿瘤的快速无干扰组织分析,(a)术中组织快速病理检查流程图,(b)荷瘤小鼠身上切除的癌组织的NIR-II荧光宽场显微图像和H&E染色,(c)NIR-II荧光和明场图像,对比未经治疗和经过抑制剂GM6001治疗的患者切除的肿瘤结节,T = 肿瘤组织,N = 正常组
Fig. 11 Rapid unperturbed-tissue analysis for ex vivo tumor by NIR-II wide-field fluorescence microscopy, (a) the schematic diagram of rapid pathological examination of intraoperative tissues, (b) NIR-II fluorescence microscopic images and H&E staining of cancer tissues excised from tumor-bearing mice, (c) NIR-II fluorescence and brightfield images, comparing the tumor nodules resected by patients treated without or with MMP inhibitor GM6001, T = tumor tissue, N = normal tissu

图12 病变肠段NIR-II荧光宽场显微术,(a)结肠段置于盖玻片上,(b)在盖片下放置一个金属环,(c)结肠段NIR-II荧光宽场显微成像示意图,(d)结肠壁解剖结构示意图,(e)不同深度的浆膜图像(比例尺:200 μm),(f)肌层在不同深度的图像,(g)不同深度黏膜及黏膜下层图像,(h)两个选定病灶的NIR-II荧光宽场显微图像,(i)两个病灶的H&E染色结
Fig. 12 Diseased intestinal segment NIR-II fluorescence wide-field microscopy, NIR-II fluorescence wide-filed microscopy on diseased intestinal segment with high spatial resolution, (a) the colonic segment was placed on a coverslip, (b) a metal annulus was placed under the coverslip, (c) a photograph of the NIR-II fluorescence wide-field microscopic imaging on the colonic segment, (d) the schematic diagram to illustrate the anatomical structure of colon wall, (e) images of the serosa taken at different depths (scale bar: 200 μm), (f) images of the muscularis at different depths, (g) images of mucosa and submucosa at different depths, (h)NIR-II fluorescence wide-field microscopic images of two selected lesions, (i) the two lesions with H&E stainin
在临床手术中,胆囊切除带来的医源性肝外胆管损伤并发症后果严重。尽管基于X射线的胆管造影可以降低胆道损伤的发生率,但辐射损伤和专业依赖阻碍了其进一步的临床应用。NIR-II荧光高对比度显示胆道成像技术,能有效减轻胆道解剖变异和胆管损伤的风险。钱骏教授课题组,发现ICG与胆汁中的蛋白质成分结合后可发出增强的NIR-IIb荧光信号,研究者采用三种不同倍率的物镜实施高清晰的胆道显微成像。随后,课题组又报道了AIE纳米颗粒作为胆道造影剂,在NIR-IIb窗口实现高质量具有精确诊断能力的胆管造
一些研究表明,大鼠的大脑拥有默认模式网络,对比小鼠,其大脑与人类的大脑更相
唐本忠院士、钱骏教授

图13 NIR-II大鼠脑血管造影,(a)静脉注射AIE纳米颗粒的大鼠,不同深度下的NIR-II(>1 200 nm)荧光宽场显微脑血管图,红色箭头表示直径为9.1 μm的毛细血管,深度为700 μm,(b)和(c)中血管的横截面强度和半峰全宽对应于图(a)中黄色虚线,(d)大视场大鼠脑血管在150 μm深度的NIR-II荧光图像和(e)不同大小的血管的横向强度对应于(d)中的黄色虚
Fig. 13 NIR-II rat cerebral angiography, (a) in vivo NIR-II (>1 200 nm) fluorescence microscopic imaging of brain vasculature of a rat intravenously injected with AIE dots at different depths, the red arrows demonstrate a blood capillary (diameter = 9.1 μm) at the depth of 700 μm, the cross-sectional intensity profiles and full width at half maximum (FWHM) of the blood vessels which correspond to the dotted yellow lines in (a) are plotted in (b) and (c), (d) NIR-II fluorescence image of brain vasculature of rats treated with AIE dots at the depth of 150 μm in wide field of view and (e) the cross-sectional intensity profiles of the blood vessels in different sizes corresponding to the dotted yellow line in (d
大型动物(如狨猴)的NIR-II荧光成像技术的探索有利于临床转化。普通狨猴是一种人类行为和疾病研究的潜在模型。其一,狨猴在药理活性、治疗靶点、药物暴露量、动力学和代谢等方面与人类相似性较高,被广泛应用于纳米医学研究;其二,狨猴体型小,仅需少量的测试试剂即可完成一项研究计划;其三,狨猴繁殖快,能提供足够的动物数量来支持研究。
狨猴神经活动和脑血流调节的研究,有利于揭开人类大脑疾病的神秘面纱。钱骏教授、高利霞教授及唐本忠院士

图14 高空间分辨率的狨猴穿颅脑血管显微系统,(a)头骨磨薄狨猴显微成像系统示意图,(b)5 x NIR-II 荧光宽场显微脑血管图像,比例尺:300 μm,(c)皮质血管位置时间函数图,(d) 图c时域信号的快速傅里叶变换,(e) 图c时域信号的功率谱密度,(f) 狨猴粪便和尿液的标准化光致发光强度,(g-m)狨猴薄头骨下方不同深度(100~600 μm)的脑血管显微图像,比例尺:100 μm,(n)200 μm处血管直径分析高斯拟
Fig. 14 High-spatial-resolution through-thin-skull cerebrovascular microscopic imaging in marmosets, (a) the schematic diagram of the microscopic imaging system of the thinned-skull marmoset, (b) 5 x NIR-II fluorescence microscopic cerebrovascular image, scale bar: 300 μm, (c) the plot of cortical vessel position time function, (d) the fast Fourier transformation of time-domain signals in Fig. (c), (e) the power spectral density of Fig. (c), (f) the normalized PL intensity of the feces and urine from the marmosets, (g-m) microscopic images of different depths (100-600 μm) of cerebral blood vessels of the thinned-skull marmoset, scale bar: 100 μm, (n) the analysis of the vessel at the depth of 200 μ
课题组继续跟踪狨猴毛细血管的周期性跳动,测量和计算获得狨猴的呼吸频率为0.64 Hz、心率为3.30 Hz。通过锁定一个典型的微小皮质区域,研究人员使用25倍物镜进一步进行NIR-II穿薄颅骨脑血管造影,最终在近700 μm深度实现清晰成像,并且清楚地识别200 μm深处直径为5.2 μm的毛细血管(

图15 穿薄颅骨的狨猴皮质高时间分辨率的血流监测和血栓观察,(a)脑血管系统和六条示例血管的25 x显微图像,比例尺:100 μm,(b)血管中荧光点信号时间位置距离关系图,(c)图(a)的6条血管平均血流量,(d)532 nm 激光激发的PTI 诱导示意图,(e)PTI诱导前,脑血管的NIR-II荧光宽场显微图像,比例尺:100 μm,(f)PTI诱导后,脑血管的NIR-II荧光显微图像,比例尺:100 μm,(g)PTI 诱导前照射区域的3D NIR-II荧光强度分布,(h)PTI诱导后照射区域的3D NIR-II荧光强度分布,白色箭头代表PTI诱导前后的流动方向,PTI引起血流方向的改
Fig. 15 Through-thinned-skull cortical blood flow monitoring and observation of the PTI induced thrombosis in marmosets, (a) 25 x microscopic images of the cerebrovascular system and six sample blood vessels, scale bar: 100 μm, (b) the plot of the time, position and distance of the fluorescent point signal in the blood vessel, (c) the average blood flow of the 6 vessels in Fig. (a), (d) the schematic of PTI induction by 532 nm laser excitation, (e) NIR-II fluorescence microscopic image of cerebral blood vessels before PTI induction, scale bar: 100 μm, (f) NIR-II fluorescence microscopic image of cerebral blood vessels after PTI induction, scale bar: 100 μm, (g) 3D NIR-II fluorescence intensity distribution in the illuminated area before PTI induction, (h) the 3D NIR-II fluorescence intensity distribution of the illuminated area after PTI induction, the white arrows represent the flow direction before and after PTI induction, PTI causes a change in the direction of blood flow
猕猴是一种具有类人皮质和组织的动物模型。灵长类动物和大鼠之间的一个显著差异是,大部分大脑皮层被组织成集成神经元反应的模块化功能单元(称为列或域

图16 猕猴的NIR-II荧光宽场显微脑血管成像,(a)适用于大动物的NIR-II荧光宽场显微系统,(b)3 x 脑血管显微图像,(c)25 x 脑血管显微图像,(d)3根采样血管血流速度,(e)毛细血管内荧光点信号跟踪的逐帧显示,右图标记跟踪位置,(f)荧光点位置的时间函数的图,比例尺表示,(b),(c),(d):100 μm,(e):50 μ
Fig. 16 NIR-II fluorescence wide-field microscopic imaging of cerebral vessels in rhesus monkeys, (a) NIR-II fluorescence wide-field microscopy system suitable for large animals, (b) 3 x cerebrovascular microscopic image, (c) 25 x cerebrovascular microscopic image, (d) blood flow velocity of the 3 sampling vessels, (e) the tracking frame display of the fluorescent signal in the capillary, picture on the right marks the tracking position, (f) the plot of fluorescent position as a function of time, scale bars in (b), (c) and (d): 100 µm, scale bars in (e): 50 µ
在系统改造上,课题组在原系统基础上设计了一个适用于灵长类大动物的三维可调节NIR-II荧光宽场显微系统。由于猕猴大脑尺寸较大,目标成像区域可能位于前后或中间倾斜的平面中。为了满足这一需求,课题组将整个光学系统安装在一个多向可调支架上。这种可灵活平移和旋转的系统,使显微物镜可垂直于猕猴颅窗(
借助宽场显微面探测的大视场优势,研究者同时评估了视场中多个毛细血管的流动特性。因为静脉从分支收集血液,而动脉将血液分配到分

图17 猕猴动静脉测定和心跳脉冲计算,(a)NIR-II荧光宽场脑血管显微图像血流方向显示和动静脉测定,深度180 μm,比例尺表示 100 μm,(b)猕猴脑血管的NIR-II荧光宽场显微图像和心脏脉冲周期高斯拟合图,深度130 μm,比例尺表示 100 μ
Fig. 17 Rhesus arteriovenous measurement and heart pulse calculation, (a) NIR-II fluorescence wide-field cerebrovascular microscopic image of blood flow direction and arteriovenous measurement, depth = 180 μm, scale bar: 100 μm, (b) NIR-II fluorescence wide-field microscopic images of cerebral blood vessels of the rhesus macaque and Gaussian fitting graph of heart pulse period, depth = 130 μm, scale bars: 100 μ
NIR-II荧光宽场显微系统拥有高时间分辨率以监测动态生物过程,提供高空间分辨率以观察微小生物结构、精准定位药物分布,还具备大成像深度。同时,该系统对比其他显微成像系统(如共聚焦显微术、光片显微术)易于上手使用并且成本适中,便于在活体研究和临床实践中推广。通过相关研究团队的努力,实现了从小鼠、大鼠、狨猴到猕猴,从脑血管、肿瘤血管到炎症组织及离体细胞、组织切片等的NIR-II荧光宽场显微成像,证明了NIR-II荧光宽场显微成像技术的巨大潜力。
总体来说,得益于成像试剂日益丰富,光学探测器持续提升,系统成像光路和电路的创新改进,NIR-II荧光宽场显微成像技术不断在更大的成像深度、更优的信背比、更高的空间分辨率、更快的成像速度上得到创新、改进和突破。首先,材料技术进步,碳纳米管、共轭聚合物、半导体量子点、有机纳米颗
总之,活体成像在成像深度和信背比方面持续精进的需求,推动了NIR-II荧光宽场显微活体成像系统和技术的蓬勃发展。成像光路的优化,荧光探针的创新都大大促进了成像性能的提升,但NIR-II荧光宽场显微成像技术未来仍需在以下方面进一步提升:(1)NIR-II荧光宽场显微成像技术受限于背景的离焦信号影响,空间分辨率仍然不够理想,成像效果在同一深度不如共聚焦显微术。为了进一步抑制背景,考虑到1 450 nm处存在能有效抑制背景信号的水的强吸收, NIR-IIx波段具备最佳成像潜力。但是,可用于NIR-IIx并且临床适用的成像试剂仍有待开发。(2)部分荧光试剂存在免疫摄取和生物自清除方面的安全问题,对生物应用造成潜在的长期毒性。这影响了NIR-II荧光宽场显微成像进一步临床大规模应用。(3)NIR-IIc波段适用,同时具备高量子效率的近红外探测器仍有待开发和完善。尤其这几年,随着国际形势变化,科研级别的高端仪器受到美国政府EAR出口管制,进口采购越发困难。实现科研级别的NIR-II成像探测器、滤光片、激发光源,乃至整个系统设计和后端软件配套的自主可控,是一个系统性亟需攻克的问题。(4)NIR-II荧光宽场显微成像术可以与其他成像手
References
ZHANG M, YUE J, CUI R, et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging [J]. Proceedings of the National Academy of Sciences, 2018, 115(26): 6590-5. 10.1073/pnas.1806153115 [百度学术]
ANTARIS A L, CHEN H, CHENG K, et al. A small-molecule dye for NIR-II imaging [J]. Nature Materials, 2016, 15(2): 235-42. 10.1038/nmat4476 [百度学术]
WAN H, YUE J, ZHU S, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues [J]. Nature Communications, 2018, 9(1): 1171. 10.1038/s41467-018-03505-4 [百度学术]
WELSHER K, LIU Z, SHERLOCK S P, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice [J]. Nature Nanotechnology, 2009, 4(11): 773-80. 10.1038/nnano.2009.294 [百度学术]
YANG Q, MA Z, WANG H, et al. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-II Window [J]. Advanced Materials, 2017, 29(12): 1605497. 10.1002/adma.201605497 [百度学术]
ZHANG Y, HONG G, ZHANG Y, et al. Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window [J]. ACS Nano, 2012, 6(5): 3695-702. 10.1021/nn301218z [百度学术]
ZHU S, HERRAIZ S, YUE J, et al. 3D NIR-II Molecular Imaging Distinguishes Targeted Organs with High-Performance NIR-II Bioconjugates [J]. Advanced Materials, 2018, 30(13): 1705799. 10.1002/adma.201705799 [百度学术]
WANG W, MA Z, ZHU S, et al. Molecular Cancer Imaging in the Second Near-Infrared Window Using a Renal-Excreted NIR-II Fluorophore-Peptide Probe [J]. Advanced Materials, 2018, 30(22): 1800106. 10.1002/adma.201800106 [百度学术]
WAN H, MA H, ZHU S, et al. Developing a Bright NIR-II Fluorophore with Fast Renal Excretion and Its Application in Molecular Imaging of Immune Checkpoint PD-L1 [J]. Advanced Functional Materials, 2018, 28(50): 1804956. 10.1002/adfm.201804956 [百度学术]
WANG F, MA Z, ZHONG Y, et al. In vivo NIR-II structured-illumination light-sheet microscopy [J]. Proceedings of the National Academy of Sciences, 2021, 118(6): e2023888118. 10.1073/pnas.2023888118 [百度学术]
YANG Z, FAN X, LIU X, et al. Aggregation-induced emission fluorophores based on strong electron-acceptor 2,2′-(anthracene-9,10-diylidene) dimalononitrile for biological imaging in the NIR-II window [J]. Chemical Communications, 2021, 57(25): 3099-102. 10.1039/d1cc00742d [百度学术]
YANG Z, FAN X, LI H, et al. A Small-Molecule Diketopyrrolopyrrole-Based Dye for in vivo NIR-IIa Fluorescence Bioimaging [J]. Chemistry – A European Journal, 2021, 27(57): 14240-9. 10.1002/chem.202102312 [百度学术]
WANG W, FENG Z, LI B, et al. Er3+ self-sensitized nanoprobes with enhanced 1525 nm downshifting emission for NIR-IIb in vivo bio-imaging [J]. Journal of Materials Chemistry B, 2021, 9(12): 2899-908. 10.1039/D0TB02728F [百度学术]
FAN X, LI Y, FENG Z, et al. Nanoprobes-Assisted Multichannel NIR-II Fluorescence Imaging-Guided Resection and Photothermal Ablation of Lymph Nodes [J]. Advanced Science, 2021, 8(9): 2003972. 10.1002/advs.202003972 [百度学术]
YU X, YING Y, FENG Z, et al. Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window [J]. Nano Today, 2021, 39: 101235. 10.1016/j.nantod.2021.101235 [百度学术]
BRUNS O T, BISCHOF T S, HARRIS D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots [J]. Nature Biomedical Engineering, 2017, 1(4): 0056. 10.1038/s41551-017-0056 [百度学术]
ZHENG Z, JIA Z, QU C, et al. Biodegradable Silica-Based Nanotheranostics for Precise MRI/NIR-II Fluorescence Imaging and Self-Reinforcing Antitumor Therapy [J]. Small, 2021, 17(10): 2006508. 10.1002/smll.202006508 [百度学术]
ZHANG X, HE S, DING B, et al. Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window [J]. Chem Eng J, 2020, 385: 123959. 10.1016/j.cej.2019.123959 [百度学术]
SUO Y, WU F, XU P, et al. NIR-II Fluorescence Endoscopy for Targeted Imaging of Colorectal Cancer [J]. Advanced Healthcare Materials, 2019, 8(23): 1900974. 10.1002/adhm.201900974 [百度学术]
LI D, LIU Q, QI Q, et al. Gold Nanoclusters for NIR-II Fluorescence Imaging of Bones [J]. Small, 2020, 16(43): 2003851. 10.1002/smll.202003851 [百度学术]
SHOU K, QU C, SUN Y, et al. Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a NIR-II Probe [J]. Advanced Functional Materials, 2017, 27(23): 1700995. 10.1002/adfm.201700995 [百度学术]
LI D, QU C, LIU Q, et al. Monitoring the Real-Time Circulatory System-Related Physiological and Pathological Processes In Vivo Using a Multifunctional NIR-II Probe [J]. Advanced Functional Materials, 2020, 30(6): 1906343. 10.1002/adfm.201906343 [百度学术]
QU C, XIAO Y, ZHOU H, et al. Quaternary Ammonium Salt Based NIR-II Probes for In Vivo Imaging [J]. Advanced Optical Materials, 2019, 7(15): 1900229. 10.1002/adom.201900229 [百度学术]
WANG C, FAN W, ZHANG Z, et al. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy [J]. Advanced Materials, 2019, 31(49): 1904329. 10.1002/adma.201904329 [百度学术]
ZHU S, YUNG B C, CHANDRA S, et al. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission [J]. Theranostics, 2018, 8(15): 4141-51. 10.7150/thno.27995 [百度学术]
TIAN R, MA H, ZHU S, et al. Multiplexed NIR-II Probes for Lymph Node-Invaded Cancer Detection and Imaging-Guided Surgery [J]. Advanced Materials, 2020, 32(11): 1907365. 10.1002/adma.201907365 [百度学术]
TIAN R, ZENG Q, ZHU S, et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics [J]. Science advances, 5(9): eaaw0672. 10.1126/sciadv.aaw0672 [百度学术]
ZHU S, HU Z, TIAN R, et al. Repurposing Cyanine NIR-I Dyes Accelerates Clinical Translation of Near-Infrared-II (NIR-II) Bioimaging [J]. Advanced Materials, 2018, 30(34): 1802546. 10.1002/adma.201802546 [百度学术]
WANG R, LI X, ZHOU L, et al. Epitaxial Seeded Growth of Rare-Earth Nanocrystals with Efficient 800 nm Near-Infrared to 1525 nm Short-Wavelength Infrared Downconversion Photoluminescence for In Vivo Bioimaging [J]. Angewandte Chemie International Edition, 2014, 53(45): 12086-90. 10.1002/anie.201407420 [百度学术]
LEI X, LI R, TU D, et al. Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging [J]. Chemical Science, 2018, 9(20): 4682-8. 10.1039/c8sc00927a [百度学术]
LIU L, WANG S, ZHAO B, et al. Er3+ Sensitized 1530 nm to 1180 nm Second Near-Infrared Window Upconversion Nanocrystals for In Vivo Biosensing [J]. Angewandte Chemie International Edition, 2018, 57(25): 7518-22. 10.1002/ange.201802889 [百度学术]
WANG T, WANG S, LIU Z, et al. A hybrid erbium(III)–bacteriochlorin near-infrared probe for multiplexed biomedical imaging [J]. Nature Materials, 2021, 20(11): 1571-8. 10.1038/s41563-021-01063-7 [百度学术]
FAN Y, WANG P, LU Y, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging [J]. Nature Nanotechnology, 2018, 13(10): 941-6. 10.1038/s41565-018-0221-0 [百度学术]
YANG H, LI R, ZHANG Y, et al. Colloidal Alloyed Quantum Dots with Enhanced Photoluminescence Quantum Yield in the NIR-II Window [J]. J Am Chem Soc, 2021, 143(6): 2601-7. 10.1021/jacs.0c13071.s001 [百度学术]
LI C, ZHANG Y, WANG M, et al. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window [J]. Biomaterials, 2014, 35(1): 393-400. 10.1016/j.biomaterials.2013.10.010 [百度学术]
LI C, LI F, ZHANG Y, et al. Real-Time Monitoring Surface Chemistry-Dependent In Vivo Behaviors of Protein Nanocages via Encapsulating an NIR-II Ag2S Quantum Dot [J]. ACS Nano, 2015, 9(12): 12255-63. 10.1021/acsnano.5b05503 [百度学术]
YANG H, HUANG H, MA X, et al. Au-Doped Ag2Te Quantum Dots with Bright NIR-IIb Fluorescence for In Situ Monitoring of Angiogenesis and Arteriogenesis in a Hindlimb Ischemic Model [J]. Advanced Materials, 2021, 33(37): 2103953. 10.1002/adma.202103953 [百度学术]
ZHANG Y, ZHANG Y, HONG G, et al. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice [J]. Biomaterials, 2013, 34(14): 3639-46. 10.1016/j.biomaterials.2013.01.089 [百度学术]
SUN Y, DING M, ZENG X, et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery [J]. Chemical Science, 2017, 8(5): 3489-93. 10.1039/C7SC00251C [百度学术]
SUN Y, QU C, CHEN H, et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer [J]. Chemical Science, 2016, 7(9): 6203-7. 10.1039/c6sc01561a [百度学术]
ZHOU H, ZENG X, LI A, et al. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy [J]. Nature Communications, 2020, 11(1): 6183. 10.1038/s41467-020-19945-w [百度学术]
ZHENG Y, LI Q, WU J, et al. All-in-one mitochondria-targeted NIR-II fluorophores for cancer therapy and imaging [J]. Chemical Science, 2021, 12(5): 1843-50. 10.1039/D0SC04727A [百度学术]
LI J, JIANG R, WANG Q, et al. Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy [J]. Biomaterials, 2019, 217: 119304. 10.1016/j.biomaterials.2019.119304 [百度学术]
ZHANG W, SUN X, HUANG T, et al. 1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal therapy [J]. Chemical Communications, 2019, 55(64): 9487-90. 10.1039/C9CC04196F [百度学术]
TANG Y, LI Y, WANG Z, et al. Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence for in vivo real-time monitoring of drug toxicity [J]. Chemical Communications, 2019, 55(1): 27-30. 10.1039/c8cc08413k [百度学术]
YIN C, LI X, WANG Y, et al. Organic Semiconducting Macromolecular Dyes for NIR-II Photoacoustic Imaging and Photothermal Therapy [J]. Advanced Functional Materials, 2021, 31(37): 2104650. 10.1002/adfm.202104650 [百度学术]
WANG Q, DAI Y, XU J, et al. All-in-One Phototheranostics: Single Laser Triggers NIR-II Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy [J]. Advanced Functional Materials, 2019, 29(31): 1901480. 10.1002/adfm.201901480 [百度学术]
WANG Q, XIA B, XU J, et al. Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy [J]. Materials Chemistry Frontiers, 2019, 3(4): 650-5. 10.1039/C9QM00036D [百度学术]
HU Z, FANG C, LI B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows [J]. Nature Biomedical Engineering, 2020, 4(3): 259-71. 10.1038/s41551-019-0494-0 [百度学术]
MARC P H, DOUGLAS S M. Overview of SWIR detectors, cameras, and applications; proceedings of the ProcSPIE, F, 2008 [C]. [百度学术]
FENG Z, TANG T, WU T, et al. Perfecting and extending the near-infrared imaging window [J]. Light: Science & Applications, 2021, 10(1): 197. 10.1038/s41377-021-00628-0 [百度学术]
HONG G, DIAO S, CHANG J, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window [J]. Nature Photonics, 2014, 8(9): 723-30. 10.1038/nphoton.2014.166 [百度学术]
LIAO J, YIN Y, YU J, et al. Depth-resolved NIR-II fluorescence mesoscope [J]. Biomed Opt Express, 2020, 11(5): 2366-72. 10.1364/boe.386692 [百度学术]
QI J, SUN C, ZEBIBULA A, et al. Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region [J]. Advanced Materials, 2018, 30(12): 1706856. 10.1002/adma.201706856 [百度学术]
ALIFU N, RONG M, LIJUN Z, et al. A Novel TMTP1-modified Theranostic Nanoplatform for Targeted in Vivo NIR-II Fluorescence Imaging-guided Chemotherapy of Cervical Cancer [J]. Research Square, 2021, https://doi.org/10.21203/rs.3.rs-818556/v1. [百度学术]
NI H, WANG Y, TANG T, et al. Quantum Dots assisted In Vivo Two-photon microscopy with NIR-II Emission [J]. Photonics Research, 2021, https://doi.org/10.1364/PRJ.441471. [百度学术]
FENG Z, YU X, JIANG M, et al. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor [J]. Theranostics, 2019, 9: 5706-19. 10.7150/thno.31332 [百度学术]
YU X, FENG Z, CAI Z, et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy [J]. Journal of Materials Chemistry B, 2019, 7(42): 6623-9. 10.1039/C9TB01381D [百度学术]
HE Y, WANG S, YU P, et al. NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics [J]. Chemical Science, 2021, 12(31): 10474-82. 10.1039/d1sc02763h [百度学术]
ZHAN Y, LING S, HUANG H, et al. Rapid Unperturbed-Tissue Analysis for Intraoperative Cancer Diagnosis Using an Enzyme-Activated NIR-II Nanoprobe [J]. Angewandte Chemie International Edition, 2021, 60(5): 2637-42. 10.1002/anie.202011903 [百度学术]
FAN X, XIA Q, ZHANG Y, et al. Aggregation-Induced Emission (AIE) Nanoparticles-Assisted NIR-II Fluorescence Imaging-Guided Diagnosis and Surgery for Inflammatory Bowel Disease (IBD) [J]. Advanced Healthcare Materials, 2021: 2101043. 10.1002/adhm.202101043 [百度学术]
WEN Q, ZHANG Y, LI C, et al. NIR-II Fluorescent Self-Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis [J]. Angewandte Chemie (International ed in English), 2019, 58(32): 11001-6. 10.1002/ange.201905643 [百度学术]
WU D, LIU S, ZHOU J, et al. Organic Dots with Large π-Conjugated Planar for Cholangiography beyond 1500 nm in Rabbits: A Non-Radioactive Strategy [J]. ACS Nano, 2021, 15(3): 5011-22. 10.1021/acsnano.0c09981 [百度学术]
WU D, XUE D, ZHOU J, et al. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis [J]. Theranostics, 2020, 10(8): 3636-51. 10.7150/thno.41127 [百度学术]
HE M, WU D, ZHANG Y, et al. Protein-Enhanced NIR-IIb Emission of Indocyanine Green for Functional Bioimaging[J].ACS Applied Bio Materials, 2020, 3(12): 9126-34. 10.1021/acsabm.0c01384 [百度学术]
LU H, ZOU Q, GU H, et al. Rat brains also have a default mode network [J]. Proceedings of the National Academy of Sciences, 2012, 109(10): 3979. 10.1073/pnas.1200506109 [百度学术]
SILVIS S M, DE SOUSA D A, FERRO J M, et al. Cerebral venous thrombosis [J]. Nature Reviews Neurology, 2017, 13(9): 555-65. 10.1038/nrneurol.2017.104 [百度学术]
CAI X, BANDLA A, MAO D, et al. Biocompatible Red Fluorescent Organic Nanoparticles with Tunable Size and Aggregation-Induced Emission for Evaluation of Blood–Brain Barrier Damage [J]. Advanced Materials, 2016, 28(39): 8760-5. 10.1002/adma.201601191 [百度学术]
SNYDER J S, CHOE J S, CLIFFORD M A, et al. Adult-Born Hippocampal Neurons Are More Numerous, Faster Maturing, and More Involved in Behavior in Rats than in Mice [J]. The Journal of Neuroscience, 2009, 29(46): 14484. 10.1523/JNEUROSCI.1768-09.2009 [百度学术]
QI J, ALIFU N, ZEBIBULA A, et al. Highly stable and bright AIE dots for NIR-II deciphering of living rats [J]. Nano Today, 2020, 34: 100893. 10.1016/j.nantod.2020.100893 [百度学术]
FENG Z, BAI S, QI J, et al. Biologically Excretable Aggregation-Induced Emission Dots for Visualizing Through the Marmosets Intravitally: Horizons in Future Clinical Nanomedicine [J]. Advanced Materials, 2021, 33(17): 2008123. 10.1002/adma.202008123 [百度学术]
HUBEL D H, WIESEL T N. Ferrier lecture - Functional architecture of macaque monkey visual cortex [J]. Proceedings of the Royal Society of London Series B Biological Sciences, 1977, 198(1130): 1-59. 10.1098/rspb.1977.0085 [百度学术]
RAKIC P. Specification of cerebral cortical areas [J]. Science, 1988, 241(4862): 170-6. 10.1126/science.3291116 [百度学术]
CAI Z, ZHU L, WANG M, et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates [J]. Theranostics, 2020, 10(9): 4265-76. 10.7150/thno.43533 [百度学术]
SAKADŽIĆ S, MANDEVILLE E T, GAGNON L, et al. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue [J]. Nature Communications, 2014, 5(1): 5734. 10.1038/ncomms6734 [百度学术]
WEN Q, ZHANG Y, LI C, et al. NIR-II Fluorescent Self-Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis [J]. Angewandte Chemie International Edition, 2019, 58(32): 11001-6. 10.1002/ange.201905643 [百度学术]
YANG T, TANG Y A, LIU L, et al. Size-Dependent Ag2S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy [J]. ACS Nano, 2017, 11(2): 1848-57. 10.1021/acsnano.6b07866 [百度学术]
ZHANG M, ZHENG W, LIU Y, et al. A New Class of Blue-LED-Excitable NIR-II Luminescent Nanoprobes Based on Lanthanide-Doped CaS Nanoparticles [J]. Angewandte Chemie International Edition, 2019, 58(28): 9556-60. 10.1002/anie.201905040 [百度学术]
LI J-B, LIU H-W, FU T, et al. Recent Progress in Small-Molecule Near-IR Probes for Bioimaging [J]. Trends in Chemistry, 2019, 1(2): 224-34. 10.1016/j.trechm.2019.03.002 [百度学术]
GUO B, FENG Z, HU D, et al. Precise Deciphering of Brain Vasculatures and Microscopic Tumors with Dual NIR-II Fluorescence and Photoacoustic Imaging [J]. Advanced Materials, 2019, 31(30): 1902504. 10.1002/adma.201902504 [百度学术]
ZHANG Q, ZHOU H, CHEN H, et al. Hierarchically Nanostructured Hybrid Platform for Tumor Delineation and Image-Guided Surgery via NIR-II Fluorescence and PET Bimodal Imaging [J]. Small, 2019, 15(45): 1903382. 10.1002/smll.201903382 [百度学术]
ZANZONICO P B. Benefits and Risks in Medical Imaging [J]. Health Physics, 2019, 116(2): 135-7. 10.1097/hp.0000000000001038 [百度学术]
GRESPAN L, FIORINI P, COLUCCI G. The Route to Patient Safety in Robotic Surgery [M]. Springer, Cham. 10.1007/978-3-030-03020-9_2 [百度学术]
WEISSLEDER R. A clearer vision for in vivo imaging [J]. Nat Biotechnol, 2001, 19(4): 316-7. 10.1038/86684 [百度学术]
LEI X, ZHEN C, HUA Z, et al. Preparation and Preliminary Molecular Imaging Study of