摘要
采用变激发功率红外光致发光(Photoluminescence, PL)光谱方法研究四个不同阱内δ掺杂面密度的GaSb0.93Bi0.07/GaSb单量子阱(Single Quantum Well, SQW)及其非掺杂SQW参考样品。通过分析GaSbBi SQW和GaSb势垒/衬底成分的PL强度演化,发现阱内δ掺杂导致红外辐射效率显著降低,相对下降幅度约为。进一步分析结果表明,发光效率下降来源于界面恶化引发的“电子损失”和阱内晶格质量下降导致的“光子损失”的共同作用。这一工作有望为稀Bi红外发光器件的性能优化提供帮助。
III-V-Bi半导体作为一种新型的材料体系,在红外发光和光电探测应用方面颇具潜
其中GaSbBi因其较窄的禁带宽度,被认为是实现2~4 μm高性能红外发光器件的重要材
本工作利用激发功率依赖的PL光谱研究不同阱内δ掺杂面密度GaSbBi/GaSb SQW的红外发光特性,发现δ掺杂显著降低SQW的发光效率,其原因主要来自界面恶化引发的“电子损失”和阱内晶格质量下降导致的“光子损失”的共同作用,导致有效的红外辐射光子大幅度损失。这一结果揭示了δ掺杂对发光效率影响的机制,为GaSbBi基高性能红外辐射器件制造和性能优化提供参考。
四个不同δ掺杂面密度的GaSbBi/GaSb SQW和四个对应非掺杂参考样品均由分子束外延(Molecular Beam Epitaxy, MBE)制备于GaSb衬底上。所有SQW的Bi组分均约为7.0%,阱宽8 nm。阱内δ掺杂步骤如下:在GaSbBi量子阱生长到一半厚度时,停顿不同的时间段并在此期间注入相同Te气
本工作的掺杂面密度范围为(1.14~4.56)×1
PL光谱测试是在多可变条件宽波段红外调制PL光谱实验系统上完成的,系统中的傅里叶变换红外(Fourier Transform Infrared, FTIR)光谱仪以快速扫描模式运行。具体测试细节见文献[
变温PL光谱如

图1 掺杂面密度为1.14×1
Fig. 1 Variable temperature PL spectrum of GaSbBi SQW with a sheet density of 1.14×1

图2 不同掺杂面密度GaSbBi SQW样品和衬底的100 mW激发PL光谱
Fig. 2 100 mW PL spectra of GaSbBi SQW samples and Substrates with different sheet densities
其中在能量低于0.7 eV范围内,发光峰很宽,不同掺杂面密度的GaSbBi SQW及其相应参考样品在该范围内的PL半高宽列于

图3 掺杂面密度为1.14×1
Fig. 3 Power-dependent PL spectra of GaSbBi SQW with a sheet density of 1.14×1
为定量分析δ掺杂对GaSbBi SQW红外发光效率的影响,将I区PL强度进行积分,并与激发功率关联,结果如

图4 不同面密度GaSbBi SQW和其参考样品Ⅰ区PL的变激发功率积分强度,掺杂面密度分别为(a)1.14×1
Fig. 4 Excitation power-dependent PL integral intensity in region I for GaSbBi SQW samples with different sheet densities and the references. Sheet density: (a) 1.14×1

图5 Ⅰ区(a)和Ⅱ区(b)发光效率的相对降低
Fig. 5 Relative reduction of emission efficiency in region Ⅰ (a) and Ⅱ (b)
PL过程中两种机制可能导致发光效率的下降:(i)掺杂导致界面质量恶化,光生载流子受到SQW的界面散射,有效注入SQW的数量降低,如

图6 电子跃迁和复合过程示意图
Fig. 6 The schematic diagram of electronic transition and recombination process
为厘清这两种机制,对与GaSb势垒/衬底相关的II区PL积分强度进行分析。其与激发功率关系如

图7 Ⅱ区PL积分强度的激发功率演化,面密度分别为(a)1.14×1
Fig. 7 Excitation power-dependent PL integral intensity in region II, sheet density: (a) 1.14×1
更进一步的GaSbBi SQW PL峰值能量随激发功率的演化关系如

图8 不同掺杂面密度SQW及其参考样品Ⅰ区特征峰能量与激发功率的关系,面密度分别为(a)1.14×1
Fig. 8 PL peak energy vs excitation power for GaSbBi SQWs with different sheet density and the references. Sheet density: (a) 1.14×1
综上所述,对不同阱内δ掺杂面密度GaSb0.93Bi0.07 SQW及其非掺杂参考样品的激发功率依赖PL光谱研究的结果表明,GaSbBi SQW的阱内δ掺杂导致红外PL发光效率显著降低,相对下降幅度约为33%-75%。发光效率下降可归因于界面恶化引发的“电子损失”和阱内晶格质量下降导致的“光子损失”的共同效应。这一结果可望为稀Bi红外发光器件的性能优化提供帮助。
References
Wang L, Zhang L, Li Y, et al. Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application[J]. Crystals, 2017, 7(3):63. 10.3390/cryst7030063 [百度学术]
Lee J J, Kim J D, Razeghi M. Room temperature operation of 8–12 μm InSbBi infrared photodetectors on GaAs substrates[J]. Applied Physics Letters, 1998, 73(5):602-604. 10.1063/1.121869 [百度学术]
Sandall I C, Bastiman F, White B, et al. Demonstration of InAsBi photoresponse beyond 3.5μm[J]. Applied Physics Letters, 2014, 104(17):133. 10.1063/1.4873403 [百度学术]
Gu Y, Zhang Y, Chen X, et al. Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP[J]. Applied Physics Letters, 2016, 108(3):3874. 10.1063/1.4940201 [百度学术]
Francoeur S, Seong M J, Mascarenhas A, et al. Band gap of GaAs1-xBix, 0<x<3.6%[J]. Applied Physics Letters, 2003, 82(22):3874-3876. 10.1063/1.1581983 [百度学术]
Zhou M, Liang R, Zhou Z, et al. Potentiality of Bi and Mn co-doped lead-free NaNbO3 ceramics as a pyroelectric material for uncooled infrared thermal detectors[J]. Journal of the European Ceramic Society, 2019, 39(6):2058-2063. 10.1016/j.jeurceramsoc.2019.01.035 [百度学术]
Glema J, Palenskis V, Geiutis A, et al. Low-Frequency Noise Investigation of 1.09 μm GaAsBi Laser Diodes[J]. Materials, 2019, 12(4):673. 10.3390/ma12040673 [百度学术]
Lira A, Ramírez M O, Solé J G, et al. Photoluminescence of Bi4Si3O12:E
Shan W, Walukiewicz W, Iii J W A, et al. Band Anticrossing in GaInNAs Alloys[J]. Phys.Rev.lett, 1999, 82(6):1221-1224. 10.1103/physrevlett.82.1221 [百度学术]
Albert K, Wu J, Walukiewicz W, et al. Valence-band anticrossing in mismatched Ⅲ-Ⅴ semiconductor alloys[J]. Physical Review. B, Condensed Matter And Materials Physics, 2007, 75(4):045203.1-045203.6. 10.1103/physrevb.75.045203 [百度学术]
Francoeur S, Tixier S, Young E, et al. Bi isoelectronic impurities in GaAs[J]. Physical Review B, 2008, 77(8):439-446. 10.1103/physrevb.77.085209 [百度学术]
Li H, Wang Z. Bismuth-Containing Compounds[J]. Springer Series in Materials Science, 2013. 10.1007/978-1-4614-8121-8 [百度学术]
Das S C, Das T D, Dhar S. Infrared absorption and Raman spectroscopy studies of InSbBi layers grown by liquid phase epitaxy[J]. Infrared Physics & Technology, 2012, 55(4):306-308. 10.1016/j.infrared.2012.03.005 [百度学术]
Rajpalke M K, Linhart W M, Birkett M, et al. Growth and properties of GaSbBi alloys[J]. Applied Physics Letters, 2013, 103(14). 10.1063/1.4824077 [百度学术]
Samajdar D P, Das T D, Dhar S. Valence band anticrossing model for GaSb1-xBix and GaP1-xBix using k·p method[J]. Materials Science in Semiconductor Processing, 2015, 40:539-542. 10.1016/j.mssp.2015.06.065 [百度学术]
Yoshida J, Kita T, Wada O, et al. Temperature Dependence of GaAs1-xBix Band Gap Studied by Photoreflectance Spectroscopy[J]. Japanese Journal of Applied Physics, 2003, 42(2A):371-374. 10.1143/jjap.42.371 [百度学术]
Fluegel B, Francoeur S, Mascarenhas A, et al. Giant spin-orbit bowing in GaAs1-xBix[J], Phys. Rev. Lett. 2006, 97:067205. 10.1103/physrevlett.97.067205 [百度学术]
Zhang Y, Yue L, Chen X, et al. Wavelength extension in GaSbBi quantum wells using delta-doping[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 744:667-671. 10.1016/j.jallcom.2018.02.027 [百度学术]
Wang S, Zhao Q, Wang X, et al. Sadeghi M , Larsson A . 1.3 to 1.5 μm light emission from InGaAS/GaAs quantum wells[J]. Applied Physics Letters, 2004, 85(6):875-877. 10.1063/1.1759066 [百度学术]
Schubert E F, Horikoshi Y, Ploog K. Radiative electron-hole recombination in a new sawtooth semiconductor superlattice grown by molecular-beam epitaxy[J]. Physical Review B,1985, 32(2):1085-1089. 10.1103/physrevb.32.1085 [百度学术]
Harris J J. Delta-doping of semiconductors[J]. Journal of Materials Science Materials in Electronics, 1993. 10.1007/bf00180462 [百度学术]
Chen X, Song Y, Zhu L, et al. Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence[J]. Journal of Applied Physics, 2013, 113(15):153505-153507. 10.1063/1.4801530 [百度学术]
Shao J, Lu W, Lu X, et al. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer[J]. Review of Scientific Instruments, 2006, 77(6):063104. 10.1063/1.2205622 [百度学术]
Filipchenko A S, Kurenkeev T B, Bolshakov L P, et al. Photoluminescence of heavily doped n-type gallium antimonide[J]. Physica Status Solidi A-Applied Research, 1978, 48(2):281-285. 10.1002/pssa.2210480202 [百度学术]
Bignazzi A, Bosacchi A, Magnanini R. Photoluminescence study of heavy doping effects in Te-doped GaSb[J]. Journal of Applied Physics, 1997, 81(11):7540-7547. 10.1063/1.365297 [百度学术]
Shao J, Lu X, Yue F, et al. Magnetophotoluminescence study of GaxIn1-xP quantum wells with CuPt-type lon-range ordering[J]. Journal of Applied Physics, 2006, 100(5):053522. 10.1063/1.2345040 [百度学术]
Shao J, Lu C, Wei L, et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs[J]. Applied Physics Letters, 2010, 96(12):121915. 10.1063/1.3373595 [百度学术]
Shao J, Lu W, Tsen G, et al. Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice[J]. Journal of Applied Physics, 2012, 112(6):063512. 10.1063/1.4752869 [百度学术]
Shao J, Qi Z, Zhao H, et al. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells[J]. Journal of Applied Physics, 2015, 118(16):165305. 10.1063/1.4934523 [百度学术]
Yamashita K, Yoshimoto M, Oe K. Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication[J]. Physica Status Solidi. C, Conferences and critical reviews, 2006, 3(3):693-696. 10.1002/pssc.200564110 [百度学术]
Gladysiewicz M, Kudrawiec R, Wartak M S. Electronic band structure and material gain of III-V-Bi quantum wells grown on GaSb substrate and dedicated for mid-infrared spectral range[J]. Journal of Applied Physics, 2016, 119(7):553-226. 10.1063/1.4941939 [百度学术]
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11):5815-5875. 10.1063/1.1368156 [百度学术]
Chen X, Zhao H, Wu X, et al. Bi‐Induced Electron Concentration Enhancement Being Responsible for Photoluminescence Blueshift and Broadening in InAs Films[J]. Physica Status Solidi (b), 2019, 256(5). 10.1002/pssb.201800694 [百度学术]
Yue, Li, Chen, et al. Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1-xBix thin films[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 742:780-789. 10.1016/j.jallcom.2018.01.329 [百度学术]
WANG Jian, HUANG Xian, LIU Li, et al. Effect of Temperature and Current on LED Luminous Efficiency [J]. Chinese Journal of Luminescence,(王健, 黄先, 刘丽,等. 温度和电流对白光LED发光效率的影响. 发光学报)2008, 29(2):358-362. [百度学术]
Yan B, Chen X, Zhu L, et al. Bismuth-induced band-tail states in GaAsBi probed by photoluminescence[J]. Applied Physics Letters, 2019, 114(5):052104. 10.1063/1.5079266 [百度学术]