摘要
基于夜间大气层顶反射率方向性分布特性,提出了一个基于精确模拟夜间辐射传输过程的低照度遥感载荷在轨辐射定标性能评估新方法。即以南极雪地Dome C为研究区,以MT2009(Miller-Turner 2009)大气层顶月球辐照度模型和大气层顶双向反射分布函数(Bidirectional Reflectance Distribution Function, BRDF)模型模拟的夜间星上辐亮度值为基准,分析相同几何条件下,可见光近红外成像辐射计夜间光波段(Visible Infrared Imaging Radiometer Suit Day/Night Band, VIIRS DNB)观测辐亮度与基准值之间的一致性,发现在2018-2020年两者差值保持在4.97×1
低照度遥感是利用遥感手段对夜晚及晨昏时段(即低照度环境下)地表上的微弱光进行探测,可捕获无云黑夜条件下月光、城镇灯光、渔船灯光和火点等不同强度的可见光辐射信
目前,应用最广的具备夜间成像能力的遥感卫星有搭载可见光成像线性扫描业务系统(Operational Linescan System,OLS)的美国国防气象卫星(Defense Meteorological Satellite Program,DMSP),搭载可见光近红外成像辐射计(Visible Infrared Imaging Radiometer Suit,VIIRS)夜间光波段(Day/Night Band,DNB)的两颗卫星——美国极轨合作卫星(Suomi National Polar-orbiting Partnership,SNPP)和美国国家海洋和大气管理局-20(National Oceanic and Atmospheric Administration 20, NOAA-20)。与OLS相比,VIIRS DNB的空间分辨率、辐射分辨率更高,动态探测范围更宽,并且是首颗具备星上定标的低照度遥感载荷。DNB实现了在白天、夜间和晨昏之间的大动态范围监测,突破性地使用具有不同增益等级的低照度辐射载荷对全天,尤其是夜间进行成像监测,监测范围可以达到半月的亮度,甚至可以监测夜间海上的渔船。
由于载荷在轨运行期间,空间大气环境及自身元器件老化等原
基于此,本文在夜间大气层顶(top-of-atmosphere,TOA)反射率方向性分布特性分析的基础上,提出了一个基于精确模拟夜间辐射传输过程的低照度遥感载荷在轨辐射定标性能评估新方法。即以南极雪地Dome C站点为研究区,结合TOA月球辐照度模型及夜间TOA双向反射率分布函数(Bidirectional Reflectance Distribution Function,BRDF)模型,实现了VIIRS DNB卫星过境时夜间星上辐亮度的精确模拟,并以此模拟结果为参考,成功开展了SNPP VIIRS DNB和NOAA-20 VIIRS DNB载荷在轨辐射定标性能评估;并进一步基于距离校正后的卫星观测辐亮度随月相角(Lunar Phase Angle,LPA)分布的一致性完成了SNPP VIIRS DNB和NOAA-20 VIIRS DNB载荷在轨辐射定标稳定性分析。文章的结构安排如下:第一部分研究区与数据介绍,包括研究区及极光现象、VIIRS DNB载荷及数据、VIIRS DNB卫星数据筛选方法和Dome C地表实测多角度反射率数据;第二部分研究方法,包括TOA BRDF模型、TOA月球辐照度模型、以及载荷性能及稳定性评估方法;第三部分为结果与分析;最后第四部分总结全文。
南极Dome C(75.1°S,123.35°E)站点是位于海拔3.2 km处的一大片南极永久雪地,如

图1 Dome C站点在南半球位置图
Fig. 1 The location of Dome C in the south hemisphere
SNPP和NOAA-20卫星运行在824 km左右的太阳同步轨道上,作为搭载在这两颗卫星上的核心载荷,VIIRS是一个旁向扫描宽度为3 044 km左右、重访周期为12 h的扫描辐射计,其波长范围为0.41~12.50 µm,拥有22个成像和辐射波
VIIRS DNB是在轨辐射定标的第一颗低照度遥感载荷,其宽动态探测范围、极高的敏感性、依赖扫描角度的视场角和对杂散光极其敏感的特性导致DNB载荷定标困
本文使用的卫星数据为过境Dome C站点的2018-2020年SNPP VIIRS DNB和NOAA-20 VIIRS DNB数据,其下载自NOAA Comprehensive Large Array-data Stewardship System网站,包括VIIRS DNB传感器数据集SDR(Sensor Data Records)SVDNB和VIIRS DNB SDR GDNBO。前者SVDNB产品包括辐亮度及质量标志等信息,后者GDNBO产品包括与辐亮度对应的经纬度、月相角、月球天顶角、月球方位角、太阳天顶角、太阳方位角、卫星天顶角、卫星方位角等地理定位信息。
对2018-2020年SNPP VIIRS DNB和NOAA-20 VIIRS DNB数据的具体筛选标准如下:
①以Dome C为中心10 km为半径的区域为研究区。以研究区VIIRS DNB卫星影像数据的空间均匀性为依据筛选无云数据,即剔除像素平均反射率的标准差小于5%的数
②月相角大于5°且小于70°以降低月球章动效
③月球天顶角(Lunar Zenith Angle,LZA)小于75°以保证充足的月光环境。
④太阳天顶角大于118.4°筛选出VIIRS DNB HGS数据,以保证研究区不受杂散光影
Warren
, | (1) |
, | (2) |
, | (3) |
, | (4) |
, | (5) |
, | (6) |
, | (7) |
其中为θ入射天顶角,φ为观测天顶角,ϕ为相对方位角。此模型的应用首先要基于多角度反射率实测数据和最小二乘方法确定12个模型系数,然后即可求解出任意入射、观测角度下的反射率。
MT2009(Miller-Turner 2009)月球辐照度模型是由美国大气合作研究所(CIRA)的Steven D. Miller和美国科学应用国际公司(SAIC)的Robert E. Turner于2009年提出的一种半经验月球高光谱模型,模型名称由两位研发者的姓名和年份组合而成。该模型是为了VIIRS DNB定标和夜间多光谱定量化应用而提出的,是基于太阳观测光谱辐照度数据、月球光谱反照率数据、月相角以及太阳/地球/月球三者之间的空间几何随时间的变化关系而建立起来

图2 2019年五个不同月相角下MT2009输出TOA月球光谱辐照度结果图
Fig. 2 TOA lunar spectral irradiance from MT2009 under five different LPAs in 2019
数据处理流程图如

图3 SNPP VIIRS DNB和NOAA-20 VIIRS DNB载荷在轨辐射定标性能评估和稳定性分析流程图
Fig. 3 The flow chart of the evaluation of performance and consistency of on-orbit radiometric calibration of VIIRS DNB on SNPP and NOAA-20
第一部分VIIRS DNB载荷在轨辐射定标性能评估,核心思路是利用MT2009月球辐照度模型和Dome C夜间TOA BRDF模型模拟卫星过境时星上辐亮度,将此模型模拟的星上辐亮度值视为参考标准,然后将2018-2020年SNPP VIIRS DNB和NOAA-20 VIIRS DNB卫星过境时观测辐亮度分别与相同过境时间、相同几何条件下的模拟辐亮度比较分析。在之前的工
, | (8) |
其中LDNB_simulated是星上辐亮度模拟值,LMT2009是TOA下行月球辐亮度,由
(9) |
其中,θ为月球天顶角,Em是MT2009模型输出的TOA下行月球辐照度其计算式为:
, | (10) |
其中,λ代表波长,SRF(λ)代表载荷VIIRS DNB的光谱响应函数(Spectral Response Function),IMT(λ)是在输入具体时间后MT2009模型输出的TOA下行月球光谱辐照度。
第二部分为VIIRS DNB载荷在轨辐射定标稳定性评估。两颗卫星每次过境Dome C的时间不同,导致过境时地球-太阳-月球之间的几何关系不同,故首先需要借助地月平均距离、日月平均距离、地月距离、日月距离以及月球天顶角(
, | (11) |
其中LDNB_observed为VIIRS DNB观测辐亮度,LDC为距离校正后辐亮度,dME、dMS、、分别为月地距离、日月距离、月地平均距离和日月平均距离。
基于角度阈值(5°<LPA<70°, LZA<75°, SZA>118.4°)对2018—2020年SNPP VIIRS DNB和NOAA-20 VIIRS DNB数据筛选结果中LPA随DOY(day of year)分布如

图4 数据的LPA随DOY分布图(a)2018年,(b)2019年,(c)2020年
Fig. 4 The distribution of LPA with DOY for the data from 2018 to 2020(a)2018,(b)2019,(c)2020年
日期中“0428”代表04月28日,其他类似表达同理。
下

图5 SNPP VIIRS DNB在2018-2020年每个月球周期卫星观测辐亮度与星上模拟辐亮度随LPA分布图,星上模拟辐亮度与LPA间的二阶多项式拟合曲线,曲线方程,以及拟合结果的相关系数和残差
Fig. 5 The simulated and observed radiance of SNPP VIIRS DNB versus LPA, second order polynomial fitting curve between the simulated radiance and LPA, fitting equation, correlation coefficient, and residual during each lunar cycle of 2018-2020

图6 NOAA-20 VIIRS DNB在2018-2020年每个月球周期卫星观测辐亮度与星上模拟辐亮度随LPA分布图,星上模拟辐亮度与LPA间的二阶多项式拟合曲线,曲线方程,以及拟合结果的相关系数和残差
Fig. 6 The simulated and observed radiance of NOAA-20 VIIRS DNB versus LPA, second order polynomial fitting curve between the simulated radiance and LPA, fitting equation, correlation coefficient, and residual during each lunar cycle of 2018-2020
为进一步定量评估卫星观测辐亮度与模型模拟结果差异,

图7 (a1)、(b1)、(c1)图中上半部分分别为2018年、2019年、2020年SNPP VIIRS DNB载荷观测辐亮度与星上模拟辐亮度差值的绝对值随时间的分布,下半部分分别为2018年、2019年、2020年SNPP VIIRS DNB载荷过境时LPA随时间的分布;(a2)、(b2)、(c2)图中上半部分分别为2018年、2019年、2020年NOAA-20 VIIRS DNB载荷观测辐亮度与星上模拟辐亮度差值的绝对值随时间的分布,下半部分分别为2018年、2019年、2020年NOAA-20 VIIRS DNB载荷过境时LPA随时间的分布;
Fig. 7 The absolute value of the difference between the simulated and observed radiance of SNPP VIIRS DNB versus DOY in 2018, 2019, 2020 are in the top half of a1, b1 and c1; the LPA of SNPP VIIRS DNB versus DOY in 2018, 2019, 2020 are in the bottom half of a1, b1 and c1; the absolute value of the difference between the simulated and observed radiance of NOAA-20 VIIRS DNB versus DOY in 2018, 2019, 2020 are in the top half of a2, b2 and c2; the LPA of NOAA-20 VIIRS DNB versus DOY in 2018, 2019, 2020 are in the bottom half of a2, b2 and c2.
2018-2020年每个月球周期中,距离校正后的SNPP VIIRS DNB和NOAA-20 VIIRS DNB辐亮度随LPA变化、以及二次曲线拟合结果,包括方程、相关系数(

图8 2018-2020年每个月球周期中,距离校正后的SNPP VIIRS DNB和NOAA-20 VIIRS DNB辐亮度随LPA变化图
Fig. 8 The distance corrected radiance of VIIRS DNB on SNPP and NOAA-20 versus LPA during each lunar cycle of 2018-2020
利用

图9 2018年(a)、2019年(b)及2020年(c)每个月球周期,NOAA-20与SNPP VIIRS DNB载荷模拟辐亮度比值随LPA分布图
Fig. 9 The ratio of the calculated radiance between NOAA-20 and SNPP VIIRS DNB versus LPA during each lunar cycle of 2018(a), 2019(b) and 2020(c)
结合夜间TOA反射率方向性分布特性,提出了基于精确模拟夜间辐射传输过程的低照度遥感载荷在轨辐射定标性能评估新方法,开展了VIIRS DNB载荷在轨辐射定标性能评估工作,发现2018-2020年间VIIRS DNB载荷观测辐亮度与模型模拟辐亮度在0.64%以内(标准差±8.21%),保持着非常高的一致性,两者之间差值保持在4.97×1
本研究旨在提高VIIRS DNB载荷在轨辐射定标性能评估的精度,并对影响载荷在轨定标的因子定量化。该工作是监测低照度遥感载荷在轨定标稳定性,提高载荷在轨定标精度,保障低照度遥感产品广泛应用不可或缺的关键技术。
References
LI De-Ren, LI Xi. Applications of night-time light remote sensing in evaluating of socioeconomic development [J]. Journal of Macro-quality Research. [百度学术]
李德仁, 李熙。 夜光遥感技术在评估经济社会发展中的应用——兼论其对“一带一路”建设质量的保障。 宏观质量研究), 2015, 3(4): 1-8. [百度学术]
Doll C N, Muller J, Morley J G. Mapping regional economic activity from night-time light satellite imagery [J]. Ecological Economics, 2006, 57: 75-92. 10.1016/j.ecolecon.2005.03.007 [百度学术]
Bennett M M, Smith L C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics [J]. Remote Sensing of Environment, 2017, 192: 176-197. 10.1016/j.rse.2017.01.005 [百度学术]
Pandey B, Joshi P K, Seto K C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data [J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 49-61. 10.1016/j.jag.2012.11.005 [百度学术]
Bauer S E, Wagner S E, Burch J, et al. A case-referent study: light at night and breast cancer risk in Georgia [J]. International Journal of Health Geographics, 2013, 12(23): 1-10. 10.1186/1476-072x-12-23 [百度学术]
Roman M O, Stokes E C. Holidays in lights: Tracking cultural patterns in demand for energy services [J]. Earths Future, 2015, 3(6): 182-205. 10.1002/2014ef000285 [百度学术]
Xiong X J, Esposito J A, Sun J Q, et al. Degradation of MODIS optics and its reflective solar bands calibration [J]. Proceedings of SPIE, 2001, 4540: 62-70. 10.1117/12.450646 [百度学术]
Staylor W F. Degradation rates of the AVHRR visible channel for the NOAA 6, 7, and 9 spacecraft [J]. Journal of Atmospheric and Oceanic Technology, 1990, 7: 411-23. 10.1175/1520-0426(1990)007<0411:drotav>2.0.co;2 [百度学术]
Rao C R N, Chen J. Calibration of the visible and near-infrared channels of the advanced very high resolution radiometer (AVHRR) after launch [J]. SPIE, 1938: 56-66. 10.1109/igarss.1995.520594 [百度学术]
Smith D L, Read P D, Mutlow C T. The calibration of the visible/near infrared channels of the along-track-scanning-radiometer-2 (ATSR-2) [J]. 1997, 3221: 53-62. 10.1117/12.298114 [百度学术]
Cao C, Uprety S, Xiong J, et al. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites [J]. Canadian Journal of Remote Sensing, 2014, 36(5): 498-513. 10.5589/m10-075 [百度学术]
Doherty S J, Warren S G. The Antarctic and Greenland snow surfaces as calibration targets for the visible channel of the advanced very high resolution radiometer [J]. IEEE International Geoscience & Remote Sensing Symposium, 1998, 2267-9. 10.1109/igarss.1998.703808 [百度学术]
Masonis S J, Warren S G. Gain of the AVHRR visible channel as tracked using bidirectional reflectance of Antarctic and Greenland snow [J]. International Journal of Remote Sensing, 2001, 22(8): 1495-520. 10.1080/01431160121039 [百度学术]
Loeb N G. In-flight calibration of NOAA AVHRR visible and near-IR bands over Greenland and Antarctica [J]. International Journal of Remote Sensing, 2010, 18(3): 477-90. [百度学术]
Six D, Fily M, Alvain S, et al. Surface characterisation of the Dome Concordia area (Antarctica) as a potential satellite calibration site, using Spot 4/Vegetation instrument [J]. Remote Sensing of Environment, 2004, 89(1): 83-94. 10.1016/j.rse.2003.10.006 [百度学术]
Jaross G, Warner J. Use of Antarctica for validating reflected solar radiation measured by satellite sensors [J]. Journal of Geophysical Research, 2008, 113(D16): 1-13. 10.1029/2007jd008835 [百度学术]
Wu A. Using Dome C for moderate resolution imaging spectroradiometer calibration stability and consistency [J]. Journal of Applied Remote Sensing, 2009, 3(1): 1-12. 10.1117/1.3116663 [百度学术]
Wenny B N, Xiong X. Using a cold earth surface target to characterize long-term stability of the MODIS thermal emissive bands [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 162-165. 10.1109/lgrs.2008.915603 [百度学术]
Qiu S, Shao X, Cao C, et al. Feasibility demonstration for calibrating Suomi-National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite day/night band using Dome C and Greenland under moon light [J]. Journal of Applied Remote Sensing, 2016, 10(1): 016024 1-13. 10.1117/1.jrs.10.016024 [百度学术]
Uprety S, Cao C. Suomi NPP VIIRS reflective solar band on-orbit radiometric stability and accuracy assessment using desert and Antarctica Dome C sites [J]. Remote Sensing of Environment, 2015, 166(106-15). 10.1016/j.rse.2015.05.021 [百度学术]
Baker N, Kilcoyne H. Joint polar satellite system(JPSS)VIIRS radiometric calibration algorithm theoretical basis document (ATBD) [J/OL] May 15, 2013. [百度学术]
Liao L B, Weiss S, Mills S, et al. Suomi NPP VIIRS day-night band on-orbit performance [J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12705-12718. 10.1002/2013jd020475 [百度学术]
Lee S, Chiang K, Xiong X, et al. The S-NPP VIIRS day-night band on-orbit calibration/characterization and current state of SDR products [J]. Remote Sensing, 2014, 6(12): 12427-46. 10.3390/rs61212427 [百度学术]
MillS S, Weiss S, Liang C. VIIRS day/night band (DNB) stray light characterization and correction [M]. Earth Observing Systems XVIII. 2013, 78. 10.1117/12.2023107 [百度学术]
Shihyan L, Mcintire J, Oudrari H, et al. A new method for Suomi-NPP VIIRS day–night band on-orbit radiometric calibration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 324-34. 10.1109/tgrs.2014.2321835 [百度学术]
Uprety S, Cao C, Gu Y, et al. Calibration improvements in S-NPP VIIRS DNB sensor data record using version 2 reprocessing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9602-11. 10.1109/tgrs.2019.2927942 [百度学术]
Uprety S, Cao C. Radiometric and spectral characterization and comparison of the Antarctic Dome C and Sonoran Desert sites for the calibration and validation of visible and near-infrared radiometers [J]. Journal of Applied Remote Sensing, 2012, 6(1): 1-15. 10.1117/1.jrs.6.063541 [百度学术]
Qiu S, Shao X, Cao C Y, et al. Assessment of straylight correction performance for the VIIRS Day/Night Band using Dome-C and Greenland under lunar illumination [J]. International Journal of Remote Sensing, 2017, 38(21): 5880-98. 10.1080/01431161.2017.1338786 [百度学术]
Hudson S R, Warren S G, Brandt R E, et al. Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization [J]. Journal of Geophysical Research, 2006, 111(D18): 1-19. 10.1029/2006JD007290 [百度学术]
Warren S G, Brandt R E, O'RAWE HINTON P. Effect of surface roughness on bidirectional reflectance of Antarctic snow [J]. Journal of Geophysical Research: Planets, 1998, 103(E11): 25789-807. 10.1029/98je01898 [百度学术]
Miller S D, Turner R E. A dynamic lunar spectral irradiance dataset for NPOESSVIIRS DayNight Band nighttime environmental [J]. IEEE Transactions on Geoscience And Remote Sensing, 2009, 47(7): 2316-29. 10.1109/tgrs.2009.2012696 [百度学术]
Li J, Qiu S, Zhang Y, et al. Assessment of BRDF impact on VIIRS DNB from observed top-of-atmosphere reflectance over Dome C in nighttime [J], Remote Sensing, 2021, 13(2):301. 10.3390/rs13020301 [百度学术]