摘要
利用太赫兹时域光谱(THz-TDS)技术研究了氧化铝(Al2O3)在宽带太赫兹波范围(0.2~3.0 THz)内的光谱特性。改变晶体光轴与太赫兹脉冲偏振方向间的夹角(方位角),得到了Al2O3晶体在不同方位角下的太赫兹时域谱,计算了Al2O3晶体o光和e光的折射率和吸收系数,并画出了Al2O3晶体在太赫兹波段的折射率椭圆图。结果表明,Al2O3在太赫兹频段具有较大的双折射率和较低的吸收系数,双折射率高达0.36,吸收系数低于5 c
太赫兹波(THz)介于远红外和微波之间,通常是指频率范围约为0.1~10 THz的电磁波。由于最初相当长时间内缺乏有效的产生和探测技术,THz波段曾被称为“THz空隙
氧化铝是一类无机化合物,是化学式为Al2O3的两性氧化物,具有优异的化学、物理和光学性能。Al2O3晶体在高温下具有高机械强度、良好的热性能和优异的光学透明
本文利用THz-TDS研究了氧化铝(Al2O3)晶体在太赫兹频段的光谱特性。水平偏振的太赫兹脉冲垂直入射样品,通过旋转样品,改变样品方位角,在0.2~3.0 THz频率范围内研究了Al2O3晶体的太赫兹光谱特性。实验结果表明,Al2O3晶体在太赫兹频段存在双折射现象,基于晶体的双折射特性可以实现对THz脉冲的振幅和相位的调制。Al2O3晶体在THz范围内具有较大的双折射率和较低的吸收系数,因此可以应用于太赫兹器件的基础材料。
实验所用仪器为英国剑桥TeraView公司生产的型号为TeraPulse 4000的太赫兹脉冲光谱仪。利用透射型THz-TDS测量了Al2O3晶体在THz频率下的光谱性质。设备光源采用中心波长为780 nm的飞秒光纤激光,THz产生器和探测器为砷化镓光电导开关。太赫兹光谱的有效频谱宽度为0.06~4.5 THz,信噪比最高达70 dB。
透射型THz-TDS系统的原理图如

图 1 透射型THz-TDS装置原理示意图
Fig. 1 Schematic diagram of transmission-type THz-TDS system
从电磁场理论出发,透过样品前的太赫兹电场强度Er和透过样品后含有样品信息的电场强度Es的比值可表示为:
, | (1) |
其中d为样品厚度,ω为辐射角频率,c为真空中的光速,T(n)为样品表面的菲涅耳反射损耗。
因此,通过测量电场的比值,可以直接得到样品的频率相关折射率n和吸收系数α。
在我们的测量中,样品的电场可表示为:
. | (2) |
参考(背景)的电场可表示为:
, | (3) |
其中ASO和ARO是电场的振幅,φSO和φRO是太赫兹脉冲的相位。
将式(
, | (4) |
吸收系数可以表示为:
, | (5) |
折射率可表示为:
. | (6) |
实验中所研究的样品是x切向Al2O3单晶,样品厚度为0.51 mm,光轴方向与z轴重合。THz脉冲水平偏振且垂直入射样品光轴所在表面,THz波的偏振方向与晶体光轴的夹角我们用方位角φ表示,如

图 2 入射THz波偏振方向与晶体光轴夹角(方位角)φ的示意图
Fig. 2 Schematic diagram of the angle (azimuth) φ between polarization of incident THz wave and optical axis of crystal


图 3 (a) 方位角分别为0°、30°、60°和90°时样品的太赫兹时域谱; (b) 方位角分别为90°、120°、150°和180°时样品的太赫兹时域谱
Fig. 3 (a) Terahertz time-domain spectra of the sample with azimuthal angles of 0°, 30°, 60° and 90° respectively; (b) Terahertz time-domain spectra of the sample with azimuthal angles of 90°, 120°, 150° and 180° respectively
选取0°和90°这两种方位角下的太赫兹时域光谱,经快速傅立叶变换后得到太赫兹频谱如



图 4 (a) Al2O3样品的太赫兹频谱; (b) 样品的太赫兹波段吸收系数; (c) 样品的太赫兹波段折射率
Fig. 4 (a) Terahertz frequency-domain spectra of Al2O3 sample; (b) Absorption coefficient of the sample in terahertz band; (c) Refractive index of the sample in terahertz band
Al2O3为负单轴晶体,折射率nx=ny=no,nz=ne,no和ne分别为晶体的寻常光(o光)和非寻常光(e光)的折射率。它属于三方晶系,点群为,空间群为,三次对称轴存在于主轴z方向,Al2O3的折射率椭球是旋转椭球,可表示为
, | (7) |
在可见光区(589 nm),氧化铝晶体的o光和e光的折射率分别为1.770和1.762,折射率之差为Δn=no-ne=0.008。然而在远红外区(300 μm,即1 THz),Al2O3晶体的o光和e光的折射率分别为3.45和3.09,折射率之差为Δn=no-ne=0.36,这表明Al2O3晶体在THz波段的双折射现象比在可见光波段更明显。Al2O3在可见光和THz波段都是单轴晶体,折射率椭球可以简化为折射率椭圆。

图 5 氧化铝晶体在可见光波段和THz波段下的折射率椭圆
Fig. 5 Index ellipsoids of Al2O3 crystal in visible and THz bands
o光和e光的较大折射率之差意味着Al2O3可用于制造太赫兹脉冲分离器或太赫兹脉冲整形器。假设入射THz脉冲的振幅为,o光和e光的折射率和吸收系数分别为no(ω),αo(ω)和ne(ω),αe(ω),晶体光轴相对于入射THz脉冲偏振方向的夹角为φ。经过Al2O3晶体后,透射o光和e光的能量比
. | (8) |
因此,通过改变方位角φ可以实现两个子脉冲的相对振幅调制。如
综上所述,本文利用透射型THz-TDS系统研究了0.2~3.0 THz频率范围内氧化铝晶体的光谱特性。太赫兹脉冲垂直入射样品,通过旋转样品改变THz波偏振方向与晶体光轴的夹角,在0°~180°方位角变化范围内,利用太赫兹脉冲测量了Al2O3晶体的时域光谱,并计算了o光和e光的折射率和吸收系数。实验结果表明,Al2O3晶体在太赫兹频段存在双折射现象,基于晶体的双折射特性实现了THz脉冲的振幅和相位调制。在整个频率范围内,Al2O3晶体具有较大的双折射率及低吸收特性。通过太赫兹时域光谱分析了样品在太赫兹波段范围内的光谱特性,从而为氧化铝性质的研究及其在太赫兹波段的应用提供参考。
References
TONG Xing-Cun. Functional Metamaterials and Metadevices [M]. Switzerland: Springer, Cham, 2017. [百度学术]
Kim K-Y, Glownia J H, Taylor A J, et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields [J]. Optics express, 2007, 15(8): 4577-4584. [百度学术]
SHEN Jian, FAN Xin, CHEN Zhi-Yuan, et al. Damping modulated terahertz emission of ferromagnetic films excited by ultrafast laser pulses [J]. Applied Physics Letters, 2012, 101(7): 072401. [百度学术]
Takano K, Asai M, Kato K, et al. Terahertz emission from gold nanorods irradiated by ultrashort laser pulses of different wavelengths [J]. Scientific Reports, 2019, 9(1): 3280. [百度学术]
Trofimov V A, Varentsova S A, CHEN Jian. Method of THz spectrum dynamics analysis for identification of compound medium [J]. Proceedings of SPIE, 2010, 7671(11): 76710G. [百度学术]
Artemchuk P Y, Sulymenko O R, Louis S, et al. Terahertz frequency spectrum analysis with a nanoscale antiferromagnetic tunnel junction [J]. Journal of Applied Physics, 2019, 127(6): 063905. [百度学术]
Federici J F, Schulkin B, HUANG Feng, et al. THz imaging and sensing for security applications - Explosives, weapons and drugs [J]. Semiconductor Science and Technology, 2005, 20(7): S266. [百度学术]
WANG Yu-Ye, CHEN Lin-Yu, XU De-Gang, et al. Advances in terahertz three-dimensional imaging techniques [J]. Chinese Optics, 2019, 12(1): 1-18. [百度学术]
Stübling E-M, Rehn A , Siebrecht T , et al. Application of a robotic THz imaging system for sub-surface analysis of ancient human remains [J]. Scientific Reports, 2019, 9(1): 3390. [百度学术]
LIU Yu, LIU Hao, TANG Mei-Qiong. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges [J]. RSC Advances, 2019, 9(17): 9354-9363. [百度学术]
William Tribe, David Newnham, Philip Taday, et al. Hidden object detection: security applications of terahertz technology [J]. Proceedings of SPIE- The International Society for Optical, 2004, 5354: 168-176. [百度学术]
YANG Hong-Ru, LI Hong-Guang. Research progress on terahertz communication technology [J]. Journal of Applied Optics, 2018, 39(1): 12-21. [百度学术]
ZHENG Zhuan-Ping, GONG Jia-Min. Investigation on THz spectrum of orotic acid by THz-TDS [J]. Journal of Terahertz ence and Electronic Information, 2019, 17(4): 563-566. [百度学术]
XIE Ming-Zhen, JIANG Li-Yun, CHE Tuan-Jie, et al. Application of terahertz technology in detecting protein organic compounds [J]. Journal of Lanzhou University (Medical Sciences), (谢明真, 蒋丽云, 车团结, 等. 太赫兹技术在检测蛋白质类有机化合物的应用进展. 兰州大学学报(医学版)), 2018, 44(6): 70-75. [百度学术]
LIU Qi-Fu, LUO Dan, LI Shao-Xian, et al. The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range [J]. Liquid Crystals, 2016, 43(6): 796-802. [百度学术]
LIU Yan, FAN Fei, CHEN Sai, et al. Terahertz Optical Properties of Nematic Liquid Crystals Depended on Different External Fields [J]. Acta Optica Sinica, 2016, 36(2): 0226001. [百度学术]
WANG Shan-Peng, LIANG Qi-Jun, TAO Xu-Tang, et al. Optical properties and birefringence in LiInS2 in the terahertz frequency range [J]. Optical Materials Express, 2014, 4(4): 575-586. [百度学术]
Nikolaev N A, Andreev Y M, Kononova N G, et al. Temperature dependence of terahertz optical properties of LBO and perspectives of applications in down-converters [J]. Journal of Physics Conference Series, 2018, 951(1): 012005. [百度学术]
Antsygin V D, Mamrashev A, Nikolaev N A. Terahertz birefringence of potassium niobate crystals [J]. Results in Physics, 2018, 8: 598-599. [百度学术]
SONG Ke-Chao, TIAN Zhen, ZHANG Wei-Li, et al. Temperature-dependent birefringence of lithium triborate, LBO in the THz regime [J]. Scientific Reports, 2017, 7(1): 8122. [百度学术]
CAI Hong-Lei, HUANG Hao-Liang, HUANG Qiu-Ping, et al. Optical tuning of dielectric properties of La0.7Sr0.3MnO3/SrTiO3 superlattices in the terahertz range [J]. Optics Express, 2018, 26(6): 7842-7851. [百度学术]
REN Guan-Hua, ZHAO Hong-Wei, ZHANG Jian-Bing, et al. Terahertz dielectric properties of single- crystal MgO [J]. Infrared and Laser Engineering, (任冠华, 赵红卫, 张建兵, 等. 氧化镁单晶在太赫兹波段的介电特性. 红外与激光工程), 2017, 46(8): 0825001. [百度学术]
Kim Y, Yi M, Kim B G, et al. Investigation of THz birefringence measurement and calculation in Al2O3 and LiNbO3 [J]. Applied Optics, 2011, 50(18): 2906-2910. [百度学术]
Miller F P, Vandome A F, McBrewster J. Aluminium Oxide [M]. Saarbrücken: Alphascript Publishing, 2010. [百度学术]
WANG Jia-Tai, WANG Er-Jiao, ZHANG Fu-Bo, et al. Research progress of alumina preparation technology [J]. Inorganic Chemicals Industry, (王甲泰, 王尔姣, 张福波, 等. 氧化铝制备技术的研究进展. 无机盐工业), 2017, 49(10): 12-15. [百度学术]
SUN Ke-Ning, MA Xi-Xi, HOU Rui-Jun, et al. Research progress in modification of alumina support and its application [J]. The Chinese Journal of Process Engineering, 2019, 19(3): 465-472. [百度学术]
Suthar K, Singh Y, Surana A R, et al. Experimental evaluation of the friction and wear of jojoba oil with aluminium oxide (Al2O3) nanoparticles as an additive [J]. Materials Today: Proceedings, 2019, 25(4): 699-703. [百度学术]
LI Dong, MA Guo-Hong, GE Jin, et al. Terahertz pulse shaping via birefringence in lithium niobate crystal [J]. Applied Physics B, 2009, 94(4): 623-628. [百度学术]