摘要
设计了一种多频带可调谐的太赫兹超材料吸收器。在超材料吸收器的结构中,引入光敏半导体硅材料,设计特殊的顶层金属谐振器,分析开口长度、线宽、介质层厚度等参数尺寸对太赫兹超材料吸收器的吸收光谱特性影响。根据光照与光敏半导体硅电导率之间的关系,研究太赫兹超材料吸收器的频率调谐特性。仿真结果得到太赫兹波段的12个吸收频率调制,其中有10处吸收峰的吸收率超过90%近完美吸收,且有6处吸收率达到99%的完美吸收,而且吸收率调制深度和相对带宽分别达到85.9 %和85.5%,具有很强的可调谐特性。设计的光激励太赫兹超材料吸收器结构简单,具有多频带可调谐和完美吸收特性,扩大了吸收器的应用范围。
超材料吸收器是一种对入射的电磁波实现高吸收率的功能器
可调谐太赫兹超材料吸收器突破在特定频率下对入射波的完美吸收,在超材料吸收器几何结构固定不变的情况下能够实现在多个波带的完美吸收,扩大吸收器的应用范围。目前,研究人员将石墨烯、相变材料和半导体材料添加到超材料吸收器结构中,通过调节电压、温度或光照等外界条件实现超材料吸收器的调
本文设计一种结构新颖简单的多频带可调谐太赫兹超材料吸收器。通过改进超材料结构,在顶层金属谐振环开口处添加光敏半导体硅,讨论超材料的结构参数对超材料吸收器的影响,在最佳结构参数下改变入射光强度调节光敏硅的电导率,在0.5~6 THz范围内,获得12个吸收峰的调制,其中有6处吸收率达到99%的完美吸收,且有10处吸收峰的吸收率超过90%近完美吸收。另外,吸收率调制深度和相对带宽分别达到85.9 %和85.5%,具有很强的可调谐特性。
超材料吸收器的结构如

图1 超材料吸收器结构示意图 (a)吸收器结构单元,(b)单元结构侧视图,(c)超材料谐振器的等效电路图
Fig.1 Structure diagram of metamaterial absorber (a)Absorber structural unit, (b) cell structure side view, (c)equivalent circuit diagram of metamaterial resonator
超材料吸收器的吸收谱根据吸收率公式得出,为超材料的反射率,为超材料的透射率,其中S11和S21为平面波激励下的反射系数和透射系数。在整个太赫兹频率范围内,由于底层金属板的存在,且金属板的厚度远远大于电磁波的趋肤深度,所以超材料整体结构的透射率为
本文利用CST微波工作室软件(CST MWs Studio)对设计的太赫兹超材料吸收器进行数值模拟获得太赫兹超材料吸收器的吸收谱,设置太赫兹波垂直入射超材料,电矢量沿x方向,磁矢量沿y方向。
超材料谐振单元中开口环复合结构等效为常见的LC振荡电
, | (1) |
式中:ε0是真空介电常数;εs=aεr+(1-a)εsi为等效介电常数;a是填充系数;εr为聚酰亚胺的介电常数;εsi为半导体硅的介电常数;c,w,g分别为开口谐振环结构的尺寸参数。金属开缝环的等效电感表示为:
, | (2) |
式中:μ0为真空磁导率;R,c为
这里设置顶层金属圆环的外半径R = 30 μm,环的径向宽度和中间金属条宽度w = 5 μm,金属条开口间隙g = 3 μm。结构单元的周期a = 70 μm;中间电介质层的厚度b = 7 μm;底层金属板厚度与顶层金膜厚度相同,都为c = 0.2 μm。

图2 无光照时太赫兹超材料吸收器的反射谱和吸收谱
Fig.2 Reflection and absorption spectra of terahertz metamaterial absorbers without illumination
为了更好地理解这种吸收机制,对吸收率较高的0.821 THz和3.929 THz两个吸收频率处的顶层谐振环和底层金属板进行了表面电流监控。

图3 无光照时吸收器的上下表面电流分布 (a)0.821 THz,(b)3.929 THz
Fig.3 The upper and lower surface current distribution of the absorber without illumination (a)0.821 THz, (b)3.929 THz
为了研究在无光照的情况下超材料结构参数对太赫兹波吸收的影响,改变超材料结构的开口间隙、线宽和介质层厚度。如

图4 不同结构参数下超材料的吸收光谱 (a)不同开口长度的吸收率曲线图,(b)不同线宽的吸收率曲线图,(c)不同介质层厚度的吸收率曲线图
Fig.4 Absorption spectra of metamaterials with different structural parameters (a) Absorption curves of different opening lengths, (b) absorption curves of different line widths, (c) absorption curves of different thickness of dielectric layers
由
在上述超材料吸收器中,通过改变超材料的结构参数实现了吸收器的吸收频率和吸收强度的调制,但这种调控方法在实际应用中还存在着制作不方便和成本高等明显的缺陷。因此,本文通过对超材料中光敏半导体硅进行不同光强的照射来实现超材料吸收器的调制,光照频率范围为可见光至近红外光,如

图5 光敏硅的特性 (a)光谱特性,(b)光照特性
Fig.5 Characteristics of photosensitive silicon, (a) spectral characteristics,(b) illumination characteristics
对

图6 硅在不同电导率下的太赫兹超材料吸收谱
Fig.6 Terahertz metamaterial absorption spectra of silicon at different conductivities
为了进一步研究本文所设计的超材料吸收器的可调谐性能,分别对吸收率调制深度(D)和相对带宽(B)进行分析,表达式如
, | (3) |
, | (4) |
式中Amax和A min分别为在不同电导率时超材料吸收率的最大值和最小值,f1和f2分别为高频和低频对应的最大吸收率时的频率。根据公式计算结果,设计的太赫兹超材料吸收器的吸收率调制深度(D)和相对带宽(B)分别为85.9 %和85.5%,显示出较强的可调协特性。
为了研究受光照时吸收峰产生的机理,对吸收率超过90%的吸收频率进行了表面电流监测,结果如

图7 光照时吸收器的上下表面电流分布 (a)4.997 THz,σ =880 S/m;(b)1.846 THz,σ =1650 S/m;(c)3.091 THz,σ =1650 S/m;(d)5.676 THz,σ =5840 S/m;(e)1.197 THz,σ =1.055×1
Fig.7 The upper and lower surface current distributions of the absorber with illumination (a)4.997 THz,σ =880 S/m;(b)1.846 THz,σ =1650 S/m;(c)3.091 THz,σ =1650 S/m;(d)5.676 THz,σ =5840 S/m;(e)1.197 THz,σ =1.055×1
设计了一种结构简单的光激励多频带可调谐太赫兹超材料吸收器,在顶层类似环扣结构的金属谐振环开口处添加光敏半导体硅,通过调节顶层超材料结构的开口间隙、线宽和中间介质层厚度,在0.5~6 THz范围内,无光照时单个超材料吸收器可获得至少8个吸收峰,但最多同时也只能获得2个完美吸收峰,且吸收峰只是较为简单的平移或较之前的吸收峰的吸收增强,调节范围有限。为了增强可调节度,基于最佳结构参数,有光照时通过控制入射光强度调节光敏半导体硅的电导率,当光敏半导体硅的电导率从1 S/m增长到1.9×1
References
Kong H, Li G, Jin Z, et al. Polarization-independent metamaterial absorber for terahertz frequency[J].Journal of Infrared, Millimeter, and Tera- hertz Waves, 2012, 33(6):649-656. [百度学术]
Grant J, Ma Y, Saha S, et al. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17):3476. [百度学术]
Khuyen B X, Tung B S, Yoo Y J, et al. Ultrathin metamaterial-based perfect absorbers for VHF and THz bands[J]. Current Applied Physics, 2016, 16(9):1009-1014. [百度学术]
ZHANG Yong, ZHANG Bin-Zhen, DUAN Jun-Ping, et al. Application of metamaterials in perfect absorber [J]. Materials Engineering(张勇, 张斌珍, 段俊萍, 等. 超材料在完美吸波器中的应用. 材料工程), 2016, 44(11):120-128. [百度学术]
Sabah C, Dincer F, Karaaslan M, et al. Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application[J]. Optics Communications, 2014, 322:137-142. [百度学术]
Wang H, Prasad Sivan V, Mitchell A, et al. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting[J]. Solar Energy Materials and Solar Cells, 2015, 137:235-242. [百度学术]
Ma B, Liu S, Kong X, et al. A novel wide-band tunable metamaterial absorber based on varactor diode/graphene[J]. Optik - International Journal for Light and Electron Optics, 2016, 127(5):3039-3043. [百度学术]
He X, Zhong X, Lin F, et al. Investigation of graphene assisted tunable terahertz metamaterials absorber[J]. Optical Materials Express, 2016, 6(2):331. [百度学术]
Luu D H, Van Dung N, Hai P, et al. Switchable and tunable metamaterial absorber in THz frequencies[J]. Journal of Science: Advanced Materials and Devices, 2016, 1(1):65-68. [百度学术]
Pitchappa P, Manjappa M, Ho C P, et al. Metamaterials: active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 2016, 4(4):540-540. [百度学术]
Xu Z, Gao R, Ding C, et al. Photoexited switchable metamaterial absorber at terahertz frequencies[J]. Optics Communications, 2015, 344:125-128. [百度学术]
Xu Z, Gao R, Ding C, et al. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber[J]. Optical Materials, 2015, 42:148-151. [百度学术]
CHENG Yong-Zhi, ZUO Xuan, HUANG Mu-Lin, et al. Design of optical drive wide-band tunable terahertz absorber [J]. Journal of Infrared and Millimeter Wave(程用志, 左轩, 黄木林, 等. 光驱动宽频带可调谐太赫兹吸波器设计. 红外与毫米波学报), 2019, 38(01):99-104. [百度学术]
Zhao X, Fan K, Zhang J, et al. Optically tunable metamaterial perfect absorber on highly flexible substrate[J]. Sensors and Actuators A: Physical, 2015,231:74-80. [百度学术]
NENG Qing-Long, ZHANG Yan, ZHANG Bin, et al. Characteristics of light-controlled tunable multiband terahertz metamaterial absorber [J]. Advances in Laser and Optoelectronics(孟庆龙, 张艳, 张彬, 等. 光控可调谐多频带太赫兹超材料吸收器的特性. 激光与光电子学进展), 2019, 56(10):253-258. [百度学术]
Zhang J, Wang G, Zhang B, et al. Photo-excited broadband tunable terahertz metamaterial absorber[J]. Optical Materials, 2016, 54:32-36. [百度学术]
Wang Y, Liu X, Wen C Z, et al. Broadband tunable hybridized metamaterials absorber at terahertz regime[J]. Ferroelectrics, 2018, 528(1):38-44. [百度学术]
Cheng Y, Gong R, Cheng Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves[J]. Optics Communications, 2016, 361:41-46. [百度学术]
ZHANG Zhang, YU Jian-Da, YAO Jian-Chuan, et al. Characteristics of terahertz metamaterial multifrequency absorber [J]. Journal of Zaozhuang University(张璋, 于建达, 姚建铨, 等. 太赫兹超材料多频吸收器特性研究. 枣庄学院学报), 2017, 34(5):33-39. [百度学术]
Song Y J, Sarabandi K. Equivalent circuit model for metamaterial-based electromagnetic band-gap isolator[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11:1366-1369. [百度学术]
Qin B, Li Z, Hu F, et al. Highly sensitive detection of carbendazim by using terahertz time-domain spectroscopy combined with metamaterial[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(2):149-154. [百度学术]
CHENG Wei, LI Jiu-Sheng. Design of a light adjustable terahertz wave absorber [J]. Electronic Components and Materials(程伟, 李九生. 一种光可调太赫兹波吸收器的设计. 电子元件与材料), 2013, 32(7):34-36. [百度学术]
Jeppesen C, Mortensen N A, Kristensen A. Capacitance tuning of nanoscale split-ring resonators[J]. Applied Physics Letters, 2009, 95(19):193108. [百度学术]
Zhu J, Han J, Tian Z, et al. Thermal broadband tunable Terahertz metamaterials[J]. Optics Communications, 2011, 284(12):3129-3133. [百度学术]
LI Ai-Yun, LIU Feng-Chu, WANG Meng, et al. Terahertz multifrequency absorber based on metamaterial [J]. Laser Journal(李爱云,刘凤收,王猛, 等.基于超材料的太赫兹波段多频吸收器.激光杂志),2019, 40(04):28-30. [百度学术]
LIU Wei, YANG Qi-Li, YAN Xin, et al. Modulation method of adjustable terahertz absorber [J]. Electronic Components and Materials(刘伟, 杨其利, 闫昕, 等. 可调控太赫兹吸收器调制方法. 电子元件与材料), 2019, 38(01):82-86. [百度学术]
SUN Chuan-You, SUN Xiao-Bin. Fundamentals of sensing technology [M]. Electronic Industry Press(孙传友, 孙晓斌. 感测技术基础.电子工业出版社), 2015. [百度学术]
CHU Qi-Hang, YANG Mao-Sheng, CHEN Jun, et al. Characteristics of controllable terahertz multiband absorber [J]. Chinese Laser(初启航, 杨茂生, 陈俊, 等.可调控的太赫兹多频带吸波器特性研究.中国激光), 2019, 46(12):1214003. [百度学术]
SHEN X P, CUI T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J].Journal of Optics, 2012, 14(11): 114012. [百度学术]