摘要
乳腺癌是女性常见癌症之一,乳腺癌区域的精准检测对乳腺癌的治疗有至关重要的作用。本文采用频率为2.52THz的连续太赫兹波反射式成像系统,对小鼠在体皮下乳腺癌模型进行了太赫兹波成像检测。研究结果表明,太赫兹波成像可以清晰识别出乳腺癌区域,且与肉眼可见肿瘤区域一致。在体乳腺癌区域的太赫兹波相对反射率高于正常组织,两者相对反射率差值高达15%。进一步,对距离皮肤表面不同深度的离体乳腺癌组织进行切片和苏木精-伊红(H&E)染色,作为金标准对照。结果发现乳腺癌区域的面积随着距离皮肤表面深度的增加而增大。通过将太赫兹波成像与H&E染色结果对比可知,在距离皮肤表面约460μm处,太赫兹波图像和H&E染色图中的肿瘤区域面积相等。由此可知,太赫兹波对在体皮下乳腺癌的探测深度大约在460μm左右,太赫兹波有望实现深部肿瘤的检测。
乳腺癌是女性癌症死亡的第二大原
太赫兹 (THz)波是指频率为0.1~10THz,位于红外与微波之间的电磁波,其具有非电离、指纹谱和对极性物质敏感等特性。太赫兹波成像作为医学成像的候选技术之一,近年来得到了广泛研究。太赫兹波成像已应用于众多肿瘤病灶的检测识
在乳腺癌组织检测方面,癌症组织的含水量约60%左右,而正常乳腺组织的含水量约40%左
在本文中,采用频率为2.52THz的连续THz波反射成像系统对小鼠在体皮下乳腺癌模型进行了成像检测。实验结果表明,THz成像可以实现在体小鼠皮下乳腺癌区域与正常组织区分,THz图像中显示的异常区域与肉眼可见肿瘤区域一致。在THz波反射成像中,乳腺癌区域的相对反射率高于正常皮肤组织。肿瘤区域的相对反射率为83%±3%,正常组织的相对反射率为68%±1.5%,肿瘤与正常组织间的相对反射率差值高达15%。此外,对距离皮肤表面不同深度的离体乳腺癌组织进行切片和H&E染色,作为金标准对照。结果发现,肿瘤区域的细胞密度高于正常组织,且乳腺癌区域的面积随着距离皮肤表面深度的增加而增大。当距离皮肤表面460μm时,H&E染色图片中的肿瘤面积与太赫兹波图像中的肿瘤区域基本一致。该实验结果表明THz波有望实现深部肿瘤的检测。

图1连续THz波反射式成像系统示意图
Fig.1 Schematic diagram of continuous THz wave reflection imaging system

图2 采用刀口法测量聚焦光斑尺寸
Fig.2 Measurement of the focal spot size by the knife-edge method
本文所有动物实验的操作均依照中国动物福利法的规定进行,并且得到了陆军军医大学实验动物伦理委员会的许可。考虑到实验模型的造模难度及成功率,本研究采用小鼠皮下乳腺癌模型。为了使得研究模型更加贴近人组织,实验选用由北京华富康生物科技有限责任公司购买的3只BALB/c小白鼠,其是一种具有免疫功能的正常小鼠,重量在10~20g之间。本实验采用鼠源乳腺癌细胞MCF-7,其被置于含有10%胎牛血清和1%抗生素的细胞培养基中培养。每只小鼠接种时,注射细胞浓度为5×1

图3 小鼠皮下乳腺癌模型
Fig.3 The subcutaneous breast cancer of mouse model
在THz波在体反射成像检测前,我们选定样品的待测区域,如

图4 (a) 样品未与反射窗口接触和(b)样品与反射窗口紧密接触
Fig.4 The sample is (a) not and (b) in close contact with the reflection window

图5 小鼠乳腺癌组织(a)样品与反射窗口紧贴的相机图和(b)太赫兹波反射成像。其中,图(a)中白色虚线区域为肿瘤与反射窗口紧贴区域,(b)黑色虚线区域为正常皮肤组织与反射窗口紧贴区域。
Fig.5 Breast cancer tissue of mouse (a) the visual images of sample in contact with reflection window and (b) reflection images of THz wave. (a) The white dotted area is the tumor in contact with reflection window and (b) The black dotted area is the normal tissue in contact with reflection window.
为了明确肿瘤组织与正常组织的反射率差异,

图6(a)、(b)和(c)分别为图3(b)NO.1、NO.2和NO.3图水平方向紫色虚线位置的标准化相对反射率。
Fig.6 (a), (b) and (c) show the normalized relative reflectivity of the horizontal purple dotted lines of Fig.3 (b) NO.1, NO.2 and NO.3, respectively.
为了验证连续THz波反射式成像结果的正确性,采用H&E染色对离体小鼠乳腺癌组织进行病理染色分析,作为金标准对照。

图7 新鲜离体患有乳腺癌的小鼠皮肤组织
Fig.7 The freshly excised breast cancer tissue of mice

图8 新鲜离体乳腺癌组织(NO.1)距离皮肤表面不同深度的实物图与切片H&E染色图
Fig.8 Staining images of freshly excised breast cancer tissue (NO.1) at different depths from skin surface
THz波成像作为医学影像的候选技术之一,其已成功应用于离体组织类型区分及浅表肿瘤病灶识别,然而采用THz波成像技术无标记原位识别乳腺体表层以下病灶、快速辨别乳腺癌残余情况依然是术中乳腺癌诊断的重点和难点。考虑到THz波在生物组织中的探测深度与组织的物理参数(折射率、吸收系数、密度等)相
该研究采用频率为2.52THz的连续太赫兹波反射成像系统,实现小鼠皮下乳腺癌模型在体反射成像。成像结果表明,太赫兹波高反射信号区域为乳腺癌区域且乳腺癌区域的反射信号高于正常组织。连续太赫兹波反射成像可清楚的识别乳腺癌区域,且与肉眼可见肿瘤区域相符。通过苏木精-伊红染色实验,证明肿瘤区域的细胞密度高于正常组织且肿瘤区域颜色被染成紫蓝色。尽管新鲜生物组织对太赫兹波有高吸收特性,然而本实验证明了太赫兹波反射成像可实现一定深度的皮下乳腺癌组织识别。由此可知,高频连续太赫兹波反射成像技术是一种实现生物组织在体成像可行且有效的方法,有望应用于各种病变组织的发展过程研究。
Reference
Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010 [J]. Ca-a cancer journal for clinicians, 2010, 60(5): 277-300. [百度学术]
Feig S A, Hendrick R E. Radiation risk from screening mammography of women aged 40-49 years [J]. Journal of the National Cancer Institute Monographs, 1997, 22(22): 119-124. [百度学术]
Brewer N T, Salz T, Lillie S E. Systematic review: the long-term effects of false-positive mammograms [J]. Annals of internal medicine, 2007, 146(7): 502-510. [百度学术]
Joseph C S, Patel R, Neel V A, et al. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging [J]. Journal of Biophotonics, 2014, 7(5): 295-303. [百度学术]
Grootendorst M R, Fitzgerald A J, Koning S G, et al. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue [J]. Biomedical Optics Express, 2017, 8(6): 2932-2945. [百度学术]
Ji Y B, Oh S J, Kang S G, et al. Terahertz reflectometry imaging for low and high grade gliomas [J]. Scientific Reports 6, 2016: 36040. [百度学术]
Sim Y C, Park J Y, Ahn K M, et al. Terahertz imaging of excised oral cancer at frozen temperature [J]. Biomedical Optics Express, 2013, 4(8): 1413-1421. [百度学术]
Png M G, Choi W J, Ng H W B, et al. The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements [J]. Physics in Medicine and Biology, 2008, 53(13): 3501-3517. [百度学术]
Wesseling P, Kros M J, Jeuken J. The pathological diagnosis of diffuse gliomas: towards a smart synthesis of microscopic and molecular information in a multidisciplinary context [J]. Diagnostic Histopathology, 2011, 17(11): 486-494. [百度学术]
Meng K, Chen T N, Chen T, et al. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma [J]. Journal of Biomedical Optics, 2014, 19(7): 077001. [百度学术]
Yamaguchi S, Fukushi Y, Kubota O, et al. Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy [J]. Physics in Medicine & Biology, 2016, 61(18): 6808-6820. [百度学术]
G. Bindu, S. J. Abraham, A. Lonappan, et al. Detection of dielectric contrast of breast tissues using confocal microwave technique [J]. Microwave and Optical Technology Letters, 2006, 48(6): 1187-1190. [百度学术]
Ashworth P C, Pickwell-MacPherson E, Pinder S E, et al. Terahertz Spectroscopy of Breast Tumors [C]. International Conference on Joint International Conference on Infrared & Millimeter Waves, 2007. [百度学术]
Bowman T, Shenaweea M E, Campbellb L. Regional spectroscopy of paraffin-embedded breast cancer tissue using pulsed terahertz transmission imaging [C]. Conference on Optical Interactions with Tissue and Cells XXVII, 2016. [百度学术]
Hassan A M, Hufnagle D C, Shenawee M E, et al. Terahertz imaging for margin assessment of breast cancer tumors [C]. International Microwave Symposium Digest IEEE Mtt S International Microwave Symposium, 2012. [百度学术]
Bowman T, Shenawee M E, Campbell L K. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas [J]. Biomedical Optics Express, 2016, 7(9): 375-3783. [百度学术]
Bowman T, Walter A, El-Shenawee M. Margin assessment of three-dimensional breast cancer phantoms using terahertz imaging [C]. Conference on Design and Quality for Biomedical Technologies IX, 2016. [百度学术]
Chen H, Chen T, Tseng T, et al. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model [J]. Optics Express, 2011, 19(22): 1-2. [百度学术]
Rahman A, Rahman K A, Rao B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging [J]. Biosensors and Bioelectronics, 2016, 82: 64-70. [百度学术]
Wallace V P, Fitzgerald A J, Shankar S, et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo [J]. British Journal of Dermatology, 2004, 151: 424–432. [百度学术]
Shenawee M E, Vohra N, Bowman T, et al. Cancer detection in excised breast tumors using terahertz imaging and spectroscopy [J]. Biomedical Spectroscopy and Imaging, 2019, 8: 1-9. [百度学术]