摘要
利用吸收、光电流和光致发光等光谱表征并结合理论报道,分析了缺陷态丰富的铜锌锡硫半导体材料的光学带隙、带尾态和深浅杂质能级,揭示了相关的缺陷态是影响铜锌锡硫带边电子结构的关键因素,其中高浓度的中性缺陷簇[]能导致带隙明显窄化,而离子性缺陷簇[]是主要的深施主缺陷态,同时存在的大量带尾态引起带边相关的光致发光峰明显红移。贫铜富锌条件下,适当减少锡含量,可有效抑制与相关的缺陷簇,并避免带隙的窄化。
四元合金化合物铜锌锡硫(Cu2ZnSnS4, CZTS)属于直接带隙半导体,禁带宽度约1.50 eV, 吸收系数很高(>), 作为太阳能电池吸收层厚度仅需1~2 µm, 相比于硅太阳能电池,制备所需原材料少,成本低;同时,相比于铜铟镓硒和碲化镉等薄膜太阳能电池,铜锌锡硫半导体组成元素环保无毒、地球储量丰富,是理想的太阳能电池吸收层材
利用磁控溅射金属前驱体后硫化的方法制备CZTS太阳能电池,工艺可控性好,薄膜质量高。基于傅里叶变换红外光谱仪,利用吸收谱、光电流谱和光致发光谱等光学表征手段对铜锌锡硫薄膜/器件进行了带边电子结构的研究。结果表明:i)高浓度的缺陷簇[]会使得铜锌锡硫半导体禁带宽度减小,导致其吸收边发生明显红移,从而使得其电池输出电压减小;ii)常规测试条件下(如稳态激发、室温环境)难以直接观测到带边电子相关的跃迁辐射,深低温下可获得源于带尾态的辐射复合,而室温下仅能观测到与缺陷态、特别是深能级缺陷态相关的发光信号;iii)在贫铜富锌组分范围内,适当降低锡组分,可以有效抑制与锡相关的缺陷簇,优化带边电子结构,提高光电转换效率。上述结果在完善铜锌锡硫半导体能带结构图的同时,有望为制备高效率的铜锌锡硫太阳能电池材料提供实验指导。
实验样品采用成熟的磁控溅射工艺制备,选用钠钙玻璃(SLG)作为衬底,磁控溅射钼(Mo)背电极,再使用纯度为4N的金属靶材,按照锡/锌/铜的顺序自下至上依次溅射,其溅射气压分别为1.20 Pa、1.60 Pa、1.60 Pa,溅射时间分别为750 s、450 s和240 s。选用硫粉作为硫源对分层金属前驱体进行快速热退火处理,硫化气压为10 Torr,加热速率为16 ℃/min, 加热到570 ℃,硫化20分钟后形成铜锌锡硫薄膜。再通过化学水浴法制备硫化镉(CdS)缓冲层,然后磁控溅射本征氧化锌(i-ZnO)和掺铝低阻氧化锌(AZO)作为前窗口层,最后热蒸发Ag-Cr上电极,得到Ag/AZO/i-ZnO/CdS/CZTS/Mo/SLG结构的铜锌锡硫太阳能电池。
采用Bruker D8 Advance X射线衍射仪对实验样品进行结构表征。

图1 CZTS薄膜(S1)X射线衍射谱,插图为EDX确定的样品中元素比例
Fig.1 X-ray diffraction pattern of a CZTS thin film (S1). The inset gives the proportion of elements in the sample by energy dispersive X-ray (EDX) spectroscopy
所有光谱实验均基于真空型傅里叶变换红外光谱仪(Bruker 80v),内置近红外和中红外光源,配备了液氮冷却的锗和硅探测器,波长覆盖范围从~500 nm到1700 nm。低噪声前置放大器(Stanford-SR560)用于对光电流信号进行放大。光致发光谱激发源为氩离子激光器,输出波长514.50 nm,最大输出功率~2 W。测试过程中,样品置于低温制冷系统(Sumitomo HC-4E2),温度可在4~300 K范围内连续可调。
, | (1) |
其中,为吸收系数,为普朗克常数,为频率,A为常数,为半导体禁带宽度,铜锌锡硫半导体为直接带隙半导体,取

图2 CZTS薄膜(S1)在不同温度下的吸收谱, 插图为基于吸收谱获得的曲线
Fig.2 Absorption spectra of CZTS thin film (S1) at different temperatures. The inset plots the curve of

图3 S1器件在不同温度下的光电流谱,阴影部分(灰色)表示深缺陷相关的信号
Fig.3 Photocurrent spectra of the device S1 at different temperatures. The grey area represents the signal related to the deep defects

图4 S1薄膜样品在不同激发功率下的光致发光谱(温度为4 K)
Fig.4 Photoluminescence spectra of S1 thin film at different excitation powers (T=4 K)
对各个激发功率下的光致发光谱进行拟合,得到发光峰峰位和积分强度与激发功率的关系,如
, | (2) |
其中:为积分强度,为激发功率,得到发光峰A、B和C的值分别为0.77、0.78和0.65 ,均小于1,结合其峰位随激光功率变化的关系,说明这些发光峰都与缺陷态相

图5 4 K温度下S1薄膜(a)发光峰峰位和(b)积分强度与激发功率的关系
Fig.5 The relationship between (a) peak position and (b) integral intensity of luminescence and excitation power of S1 thin film at 4 K
为了进一步确定发光峰的发光类型,我们研究了光致发光的温度特性,为避免因激发功率过高而导致的温度效应,激发功率设置在20 mW(远小于
, | (3) |

图6 20 mW激发功率下S1薄膜样品在不同温度下的光致发光谱
Fig.6 Photoluminescence spectra of S1 thin film at different temperatures at the excitation power of 20 mW
式(3)中是0 K下的积分强度,是玻尔兹曼常数,对应低温过程中非辐射复合通道的激活能,对应高温过程中非辐射复合通道的激活能。对不同温度下的发光谱进行拟合,得到不同温度下各发光峰的积分强度,并通过阿伦尼乌斯公式拟合,如

图7 20 mW激发功率下S1薄膜样品发光峰积分强度与温度的依赖关系及拟合结果
Fig.7 Temperature dependence of the photoluminescence integral intensity of S1 thin film at the excitation power of 20 mW. The curves are fit results from equation (3)
结合Chen等人的第一性原理计算结

图8 铜锌锡硫半导体带边电子结构示意图
Fig.8 Scheme of the bandedge electronic structure of Cu2ZnSnS4 semiconductor
上述实验观测到的铜锌锡硫吸收层光学带隙窄化、以及带隙中存在的大量带尾态和缺陷态,会俘获光生载流子,同时破坏了晶格的三维周期性势场,使得载流子的迁移率下降,特别是其中的深能级缺陷,作为有效的载流子捕获中心,大大降低了带边光生载流子的寿命,从而对电池的光电转换效率产生不利影响。考虑到上述缺陷态均与点缺陷有关,在贫铜富锌的生长条件下,不难理解,改变锡含量有望调控缺陷态的浓度,从而抑制与有关的缺陷簇。

图9 (a)50 K下S2器件的光致发光谱(b)室温下S2器件的光电流谱及其一阶导数谱
Fig.9 (a)Photoluminescence spectrum of S2 device at 50 K (b)Photocurrent spectrum and its first derivative result of S2 device at room temperature
根据吸收谱、光致发光谱以及光电流谱测试结果,并对比理论计算报道,实验上观测并确定了标准锡组分制备条件下,磁控溅射铜锌锡硫半导体材料的大量带尾态、浅受主缺陷和[]深施主缺陷,其中,带尾态深度接近80 meV、受主缺陷位于价带尾上约80 meV处、[]深施主缺陷位于导带尾下约410 meV。同时,高浓度的[]中性团簇会使铜锌锡硫半导体带隙窄化,而导致所测样品光学带隙约为1.33 eV。在合理组分范围内,适当的减小锡组分,能够有效抑制与有关的缺陷簇,同时避免缺陷簇引起的带隙窄化,从而优化铜锌锡硫半导体带边电子结构,为研制高效率的铜锌锡硫太阳能电池提供研究基础。
References
Ravindiran M, Praveenkumar C. Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device [J]. Renewable and Sustainable Energy Reviews, 2018, 94: 317-329. [百度学术]
Kumar M, Dubey A, Adhikari N, et al. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells [J]. Energy & Environmental Science, 2015, 8(11): 3134-3159. [百度学术]
Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency [J]. Advanced Energy Materials, 2014, 4(7):1301465. [百度学术]
Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells [J]. Journal of the American Chemical Society, 2009, 131(33): 11672-11673. [百度学术]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. Journal of Applied Physics, 1961, 32(3): 510-519. [百度学术]
Chen S, Walsh A, Gong X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers [J]. Advanced Materials, 2013, 25(11): 1522-1539. [百度学术]
Rey G, Larramona G, Bourdais S, et al. On the origin of band-tails in kesterite [J]. Solar Energy Materials and Solar Cells, 2018, 179: 142-151. [百度学术]
Lim K S, Yu S M, Seo S, et al. Incorporation of Ge in Cu2ZnSnS4 thin film in a Zn-poor composition range [J]. Materials Science in Semiconductor Processing, 2019, 89: 194-200. [百度学术]
Tanaka K, Miyamoto Y, Uchiki H, et al. Donor-acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals [J]. Physica Status Solidi a-Applications and Materials Science, 2006, 203(11): 2891-2896. [百度学术]
Halliday D P, Claridge R, Goodman M C J, et al. Luminescence of Cu2ZnSnS4 polycrystals described by the fluctuating potential model [J]. Journal of Applied Physics, 2013, 113(22): 223503. [百度学术]
Kim C, Hong S. Band gap shift of Cu2ZnSnS4 thin film by residual stress [J]. Journal of Alloys and Compounds, 2019,799:247-255. [百度学术]
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium [J]. Physica Status Solidi (b), 1966, 15(2): 627-637. [百度学术]
Sarswat P K, Free M L. A study of energy band gap versus temperature for Cu2ZnSnS4 thin films [J]. Physica B: Condensed Matter, 2012, 407(1): 108-111. [百度学术]
Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors [J]. Physical Review B, 1992, 45(16): 8989-8994. [百度学术]
Dirnstorfer I, Wagner M, Hofmann D M, et al. Characterization of CuIn(Ga)Se2 thin films - II. In-rich layers [J]. Physica Status Solidi a-Applied Research, 1998, 168(1): 163-175. [百度学术]
Davies G. The optical properties of luminescence centres in silicon [J]. Physics Reports, 1989, 176(3-4): 83-188. [百度学术]
Chen S, Wang L-W, Walsh A, et al. Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells [J]. Applied Physics Letters, 2012, 101(22): 223901. [百度学术]
Chen S, Yang J-H, Gong X G, et al. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 [J]. Physical Review B, 2010, 81(24):245204. [百度学术]
Lisunov K G, Guk M, Nateprov A, et al. Features of the acceptor band and properties of localized carriers from studies of the variable-range hopping conduction in single crystals of p-Cu2ZnSnS4 [J]. Solar Energy Materials and Solar Cells, 2013, 112: 127-133. [百度学术]