摘要
太赫兹波由于其独特的光学和电学性质,在物理学、生物学、公共安全检查、局域通信、信息安全、环境监测、无损检测和国防科技等民用或军事领域都有着广阔的应用前景。太赫兹探测器作为太赫兹领域的核心器件,在太赫兹系统中扮演着重要角色。因此太赫兹探测器的性能,决定了太赫兹系统的应用市场。近年来,太赫兹探测器的发展已取得突破性的成果,但是太赫兹探测器还存在着一些普遍的问题,制冷的太赫兹探测器虽然有响应速率快和噪声等效功率低等优点,但是其紧凑性不好,并且成本较高。室温可工作的太赫兹探测器虽然不需要制冷环境,但是噪声等效功率偏大,灵敏度也不高。该综述从太赫兹探测器的制备材料和器件形式等方面,阐述了太赫兹探测器的发展现状及其应用领域。
太赫兹波是位于红外和微波之间,频率为0.1~10 THz,波长为30~3 000 μm的电磁波波段,其在电磁波谱的位置如

图1 电磁波频谱分布图
Fig.1 Spectrum distribution of electromagnetic waves
太赫兹辐射源和太赫兹探测器是太赫兹系统的核心,长期以来,国内外关于太赫兹技术的研究,主要是关于太赫兹辐射源和太赫兹探测器的研
近三十年,太赫兹探测器发展迅速,其种类越来越多样化。然而器件的发展离不开材料的发展,要制备高性能的太赫兹探测器,首先需要选择合适的材料。如

图2 太赫兹探测器体系图
Fig.2 The system diagram of terahertz detectors
随着太赫兹技术的发展,太赫兹探测器的种类趋于多样化。现在最常用的分类方式是把太赫兹探测器划分为:相干探测器和非相干探测器,其中非相干探测器也叫作直接探测
直接探测器按照探测原理又可以分为热探测器和光子探测

图3 太赫兹探测器探测机理
Fig.3 Schematic diagrams illustrating the mechanism of terahertz detector
外差探测利用非线性I-V特
太赫兹波段中使用的热探测器起源于长波红外和远红外区域,包括高莱探测器、测辐射热计和热释电探测
在光电导探测器中,它们对单个光子有响
光伏型太赫兹探测器主要基于光生伏特效应,这种探测器也叫势垒型光电探测器。当器件吸收太赫兹辐射时,会激发出光生载流子,并注入到势垒附近,从而形成光生电压。场效应晶体形式的器件作为一种典型的光伏器件,在太赫兹探测器的研究中被广泛研究。场效应晶体管 (FET) 太赫兹光电探测器利用等离子体共振原理来产生光生电压,从而实现对太赫兹信号的探测。当载流子迁移率足够高时,太赫兹频率的短沟道场效应晶体管的动态特性由等离子体波控制。这种等离子体的集体振荡可以在具有反向偏置肖特基结的二维电子通道和具有周期性光栅栅极的双量子阱场效应晶体管中观察到。在流体动力学近似
, | (1) |
其中L指的栅极长度,指栅极电压,指阈值电压,m指的是电子有效质
传统的太赫兹探测器的材料,主要基于ⅢA-ⅤA族和ⅣA族的半导体材
碳纳米管是一种典型的一维材料,自从1991年被发现以来,碳纳米管在光电子探测和生物传感等领域的应用前景引起了广泛的关
石墨烯在室温下也具有很高的载流子迁移率,可以用于制备快速响应的室温光电探测器。此外,石墨烯零带隙的能带结构,使其非常适合于作为宽频带太赫兹探测器的光敏材料。目前,单层石墨烯、双层石墨烯和多层石墨烯都应用在了太赫兹探测器的制备上,并且也展现出了良好的室温可工作性能。2012年,L. Vicarelli等人制备了第一个可在室温0.3 THz工作的石墨烯太赫兹探测器,揭示了石墨烯在室温工作、快速响应的太赫兹探测器的应用前
过渡金属二硫化物(TMDs)是一种新型的半导体材料,材料的层与层之间通过范德华力结合。TMDs具有高的载流子迁移率(34 000 c
黑磷(BP)是一种类石墨烯二维材料,其带隙大于石墨烯,六角分布的磷原子排列成非平面的褶皱结构,这种特殊的原子结构使其产生固有的面内各向异性,导致黑磷具有独特的角度依赖导电性, 且在可见光到近红外的范围内存在固有的光学各向异
拓扑绝缘体材料不同于传统绝缘体和金属,其内部是绝缘体,表面受时间反演对称性保护的金属态。这种表面态由体电子态的拓扑性质决定,不易受到体系中缺陷和杂质的影响,因此,电子能有序的通过在拓扑绝缘体的通道,彼此之间没有碰撞,也没有能量的损
不同材料的性质往往是不同的,采用的探测原理可能也不同;相同的材料,通过不同器件形式所形成的太赫兹探测器的性能也是不同的。太赫兹探测器的器件形式是很多样化的,从最开始结构比较简单的高莱太赫兹探测器到现在的各种带耦合天线的太赫兹探测器。太赫兹探测器器件结构的发展,不仅丰富了制备太赫兹探测器的材料体系,也使得许多性能优异的新型材料得以运用在太赫兹探测器上,同时结构的改善也提升了太赫兹探测器的综合性能。如
高莱探测器、热释电探测器和测辐射热计探测器都可以探测比较宽的频率范围,而肖特基二极管和场效应晶体管形式的探测器探测的频率范围有限。如
电光晶体太赫兹探测器主要是利用电光晶体的电光效应来探测太赫兹波,其探测的机理为外差探测。如

图4 太赫兹探测器示意图 (a) 电光晶体太赫兹探测
Fig.4 The schematic diagram of typical terahertz detectors (a) electro-optic crystal terahertz detecto
高莱是早期出现的一种带有气体空腔的热膨胀式太赫兹探测器,这个气体腔是通过一层薄膜封闭的。如
热释电太赫兹探测器就是通过晶体的热释电效应来探测太赫兹辐射的,所以其材料主要是具有热释电性的晶体。如
测辐射热计的最早应用其实就是一个安装在电桥中的热敏电阻,当太赫兹波辐射到这个热敏电阻上时热敏电阻会发生变化,通过电阻变化值来测量太赫兹辐射的强度,从而实现了对太赫兹波的探
肖特基二极管利用金属和半导体接触形成的肖特基结原理制
场效应晶体管有漏极、源极和栅极三个电极,其主要有两种类型,结场效应晶体管和金属-氧化物半导体场效应晶体管。在太赫兹探测领域,场效应晶体管得到了广泛的应用。包括各种材料的场效应晶体管,如石墨烯场效应晶体管太赫兹探测器、Si基的CMOS场效应探测

图5 (a) 超导薄膜太赫兹探测
Fig.5 (a) Superconducting film terahertz detecto
利用等离子体波进行探测的场效应晶体管太赫兹探测器与肖特基二极管太赫兹探测器相比,具有更高的灵敏度;与热力学探测器相比,有更快的响应速度。主要是因为等离子体波的传播速度比电子的迁移速度快很多,而且很小的电流就能激发等离子体
发展高性能的紧凑型器件是现在探测器的发展趋势,场效应晶体管形式的太赫兹探测器可以很好地与CMOS技术兼容,从而极大的降低器件的尺寸。2004年,Knap等人制造了第一个硅基互补金属氧化物半导体场效应晶体管亚太赫兹、太赫兹探测
CMOS技术主要是通过调整了器件的结构来优化器件的性能,此外,通过选择不同维度的材料也是优化太赫兹探测器的性能的重要方向。一维半导体纳米线由于其高的载流子迁移率等性能,在太赫兹探测领域也展现出很大的发展前景。2012年,Miriam S. Vitiello等
天线是太赫兹探测器的一个重要组成部分,在太赫兹辐射进入探测器的过程中发挥着重要的作用。探测器通过天线来吸收入射的太赫兹辐射,天线可以在馈点处将自由空间传播的太赫兹波转变为射频电流,再通过阻抗变换把这个电流信号传送到探测器上。因此,天线对太赫兹探测器的性能有着至关重要的作用,也是设计太赫兹探测器必须要考虑的因素。天线设计的好坏,直接影响探测器对太赫兹辐射的响应程
天线按照结构原理和工作形式可分为线天线和面天线。常见的线天线通常有偶极子天线、半波长天线和环形天线等;面天线有缝隙天线、反射面天线、喇叭天线、介质天线和透镜天线
太赫兹探测器的天线设计是要考虑很多因素的,针对不同频率的太赫兹辐射需要设计不同的天线。此外,器件衬底的厚度不同,会对天线具有不同程度的干涉效应,从而影响天线对太赫兹辐射的吸收,进而影响探测器的性能。目前,对太赫兹天线的需求是,太赫兹天线不仅要满足较高的耦合效率,还要尽可能的不影响器件的适用性,例如制作大规模的阵列。如

图6 太赫兹天线示意图(a)为双极化漏透镜天
Fig. 6 Schematic diagrams of different terahertz antennas, (a) dual polarized leaky lens antenn
太赫兹波处于宏观经典理论向微观量子理论的过渡区,在长波方向属于电子学领域,在短波方向属于光子学领域。正是由于其在电磁波谱中所处的特殊位置,太赫兹波表现出与其他波段不同的特殊光学特性。宇宙中的绝大数物质都能辐射出太赫兹波,这些能辐射太赫兹波的物质就是许多天然的太赫兹源,结合太赫兹波的特殊光学性质,利用太赫兹探测器即可获取大量关于这些物质的信息。此外,太赫兹波还有许多特殊的性质,因而无论在军品应用还是民品应用方面均具有极其广阔的应用前景。

图7 太赫兹探测器应用
Fig.7 The different applications of terahertz detectors
自然界中许多极性大分子的振动及转动频率都在太赫兹波段,并且具有很强的吸收和谐振效应。由于不同物质以及不同分子对太赫兹波的吸收和散射是有很大区别的,并且这种差异性的吸收和散射是与极性分子一一对应的。这种对应关系就像每个人具有其特殊的指纹,这样对物质的太赫兹光谱进行分析就可以获得丰富的物理和化学信息,从而即可实现对极性分子的有效识
太赫兹波对金属的穿透性和X光类似,穿透性不强。但是,对塑料和陶瓷等非极性材料,太赫兹波具有较强的穿透性。此外,由于太赫兹波段的波长远大于空气中悬浮的灰尘或烟尘颗粒尺度,太赫兹波可以在浓烟、风沙环境中进行低损耗传
太赫兹波的光子能量很低,1 THz的太赫兹波的能量只有4.2 meV。与X射线相比,它的能量比X射线的光子能量低约7~8个数量级。因此,不易对人体组织或生物细胞造成不可修复的损伤以及光化电离反应。此外,水对太赫兹波有强烈的吸收,当太赫兹波照射到人体表面时,它只能停留在皮肤表层,不会穿透到人体内部。
由于太赫兹波具有的独特光学特征,使得太赫兹探测器在物理、化学、天文学和生物医学等基础研究领域有着重要的科学研究价值,而且在公共安全检查和国土防御、环境监测、无损检测、卫星通信和雷达武器等领域有着广阔的应
太赫兹波对极性分子具有识别性,因而通过太赫兹成像即可识别许多蛋白质等生物大分子。此外,太赫兹波的光子能量较
太赫兹医疗成像诊断不仅是用于民用领域,在战地医疗等军事医疗方面也有很大的市场前景。太赫兹医学成像除了安全性高之外,还有一个优势就是设备的紧凑性。现代发展的太赫兹辐射源和太赫兹探测器都要求具有很高的紧凑性,这样就极大的缩小了医学成像设备的体积,非常有利于野外环境的携带,从而可以很方便的对受伤士兵或生病的士兵进行医疗诊断。
利用太赫兹波的高穿透性,可以对环境进行监测。发生火灾时,即使空气中有悬浮的烟尘颗粒,太赫兹波依然能够穿透。通过太赫兹探测器接收到的太赫兹辐射的变化,即可反映出相应的环境信息,从而实现火灾的监测。日本东京理科大学和NTT于2016年3月17日宣布,开发出了可在烟雾环境中工作的太赫兹波照明器。已经证实,使用试制的用来验证原理的矩阵型照明器,在肉眼能见度几乎为零的模拟火灾环境中也能获得1.4 m远的物体的太赫兹图像。
太赫兹波的光子能量较低,可用于安检检查。目前,太赫兹人体安检仪已用于一些重大会议和活动的安检。由于太赫兹成像的高响应性,在火车站等人流量较大的地方利用太赫兹安检仪可极大的提高安检的效率。THz的强透射能力和低辐射能量以及国家在公共安全检测方面的重大需求,比如检测毒品,使得THz安全监测有望成为一种新的公共安全监控技术。由于THz既可以用于成像,又可以用于波谱分析,且其穿透能力极强,所以可以用其来实现非接触和非破坏性的探测,使其可以很好地应用于国土防御。科学家们曾预测,在不久的将来,THz成像技术将成为机场、车站及海关等公共场所安全检查的新手
太赫兹检测与其他无损检测技术相比,在检测非金属材料内部缺陷方面具有独特优势。太赫兹波对非极性材料的高透过性,可以检测到可见光探测不到的内部缺陷。它还可以用于绝热材料,对于这种材料热成像很难正常发挥作用,从而弥补了热成像的不足。和射线相比,其能量很低,能为软材料提供更好的对比度。与超声波相比,它可以不接触物体表面便实现成像,而且在有些材料中声波极度衰减,太赫兹波对于这些材料却非常适用。太赫兹脉冲成像技术还被用于探测航天飞机隔离层泡沫材料中的缺
太赫兹波通信比微波通信具有更高的频率带宽,其通讯速度可高达10 GB/s。利用太赫兹通信可以实现大容量、高速度、高保密性和高安全性的无线通
据报道,2016年中国电科顺利完成了全固态太赫兹成像雷达系统样机的研制。这是中国电科首部全固态太赫兹成像雷达系统样机。该太赫兹成像雷达系统由中国电科14所智能感知技术重点实验室研制,它是在中国电科12所、13所、55所,以及电子科技大学的鼎力协助下,经过仅两年多的不懈努力所取得的成果。这一突破性成果完成了太赫兹宽带一维距离像和ISAR成像试验,获得集团首幅ISAR图像,成像分辨率、成像副瓣电平等指标均达到预期效果。目前各国取得的成果包括:美国国防高级研究计划局研制出了便携式远距离太赫兹成像雷达;欧洲已经在2006年成功研制出了通信距离为1.5 km的太赫兹无线通信演示系统;英国的奎奈蒂克公司则已经推出了实用化的太赫兹违禁品探测系统。
太赫兹波在雷达、目标识别、引信及精确制导方面具有潜在的应用前景。利用太赫兹波方向性强、能量集中的特点,可制作高分辨率的战场雷达和低仰角的跟踪雷达。利用太赫兹波穿透物质的成像技术,可以探测隐藏在覆盖物或烟尘中的坦克等军事装备。部队在城市作战以及野外作战时,都可以利用太赫兹雷达来实现敌情侦查,成像效果示意图如
太赫兹探测器有着巨大的军民两用市场前景,然而现在的太赫兹探测器发展并不能满足现在的市场需求。
由于太赫兹波的独特性能,使太赫兹探测器展现出了巨大的市场前景,同时增加了对高性能探测的需求。太赫兹探测器的发展近几年已经取得了重大的突破,但还是不能满足市场需求,高性能的太赫兹探测器离实现商业化还存在很大的距离。现在的太赫兹探测器能探测的频率基本还处于太赫兹波段的低频率,很难实现对高频率的太赫兹波段的探测,实现稳定的可调频率的太赫兹探测器更困难。室温探测器的响应率还有待进一步的提高。太赫兹探测器的发展,还是朝着更高响应度、更低噪声等效功率、高紧凑性、频率可调型的室温工作探测器发展。制备材料和器件结构是影响器件性能的关键因素,本综述主要从这两个方面简单阐述了太赫兹探测器的发展现状,进而为发展高性能太赫兹探测器提供一个思路。目前,主要可以从以下几个方面提高探测器的性能:选择室温下具有优异光电性质的新材料,以发展室温太赫兹探测器;把不同维度或不同种类的材料结合起来,使其优势互补;利用天线增强对太赫兹辐射的耦合效率,以增强其响应率;设计新的器件结构,场效应晶体管形式的太赫兹探测器,材料丰富且集成度高,是一种很有发展前景的器件形式。
References
Hartmann R R, Kono J, Portnoi M E. Terahertz science and technology of carbon nanomaterials [J]. Nanotechnology, 2014, 25(32):322001. [百度学术]
ZOU Si. The investigation of Terahertz time- domain spectroscopy systems based on photoconductive antennae[D]. Huazhong University of Science & Technology(邹锶. 光电导天线的太赫兹时域光谱的系统的研究. 华中科技大学), 2013. [百度学术]
SONG Shu-Fang. Development of the terahertz detection techniques [J]. Laser & Infrared(宋淑芳. 太赫兹波探测技术的研究进展. 激光与红外), 2012, 42(12): 1367-71. [百度学术]
Klapwijk T M, Semenov A V. Engineering Physics of Superconducting Hot-Electron Bolometer Mixers [J]. IEEE Transactions on Terahertz Science & Technology, 2017, PP(99:1-22. [百度学术]
Liu J, Dai J, Chin S L, et al. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases [C]. Lasers and Electro-Optics. IEEE, 2010:1-2. [百度学术]
Terashima W, Hirayama H. GaN-based terahertz quantum cascade lasers [J]. Proceedings of SPIE-The International Society for Optical Engineering, 2015, 9483. [百度学术]
Sizov F, Rogalski A. THz detectors [J]. Progress in Quantum Electronics, 2010, 34(5):278-347. [百度学术]
AN De-Yue. High temperature superconducting terahertz detector [D]. Nanjing University ( 安德越. 高温超导太赫兹检测器. 南京大学) , 2015. [百度学术]
Müller R, Bohmeyer W, Kehrt M, et al. Novel detectors for traceable THz power measurements [J]. Journal of Infrared Millimeter & Terahertz Waves, 2014, 35(8):659-670. [百度学术]
Mitrofanov O, Luk T S, Brener I. Plasmonic enhancement of sensitivity in terahertz (THz) photo-conductive detectors [C]. SPIE Optical Engineering & Applications. International Society for Optics and Photonics, 2015:95850N. [百度学术]
Créidhe M. O'Sullivan, Murphy J A. Field guide to terahertz sources, detectors, and optics [M]. Bellingham : Society of Photo-Optical Instrumentation Engineers, 2012. - 141 p.. [百度学术]
Yang J, Qin H, Zhang K. Emerging terahertz photodetectors based on two-dimensional materials [J]. Optics Communications, 2018, 406:36-43. [百度学术]
Kawakami A, Shimakage H, Korikawa J, et al. Design and fabrication for the construction of MIR HEB mixers [J]. IEEE Transactions on Applied Superconductivity, 2016, PP(99:1-1. [百度学术]
Russer J A, Jirauschek C, Szakmany G P, et al. High-speed antenna-coupled terahertz thermocouple detectors and mixers [J]. IEEE Transactions on Microwave Theory & Techniques, 2015, 63(12):4236-4246. [百度学术]
Hu F, Sun J, Brindley H E, et al. Systems analysis for thermal infrared “THz Torch”applications [J]. Journal of Infrared Millimeter & Terahertz Waves, 2015, 36(5):474-495. [百度学术]
Li W, Liang Z, Wang J, et al. A direct method of thermal time constant measurement for lithium tantalate based terahertz pryroelectric detectors [J]. Journal of Materials Science Materials in Electronics, 2016, 27(10):1-7. [百度学术]
Nguyen T K, Kim W T, Kang B J, et al. Photoconductive dipole antennas for efficient terahertz receiver [J]. Optics Communications, 2017, 383:50-56. [百度学术]
Peng K, Parkinson P, Boland J L, et al. Broad band phase sensitive single InP nanowire photoconductive terahertz detectors [J]. Nano Letters, 2016, 16(8):4925-4931. [百度学术]
Peng K, Parkinson P, Fu L, et al. Single nanowire photoconductive terahertz detectors [C]. Optoelectronic and Microelectronic Materials & Devices. IEEE, 2015:206. [百度学术]
Sun J D . Field-effect self-mixing terahertz detectors [M]. Springer Berlin Heidelberg, 2016. [百度学术]
QIAN Fei, WANG Tian-Meng, ZHANG Yue-Heng, et al.Optimization and performance of p-GaAs homojunction THz detectors[J]. Journal of Infrared and Millimeter Waves (钱飞, 王天盟, 张月蘅, 等. p-GaAs同质结太赫兹探测器的优化与性能.红外与毫米波学报), 2015,34(1):29-35. [百度学术]
SONG Shu-Fang, XING Wei-Rong. Study of design and growth on quantum well structure terahertz material [J]. Jounal of Microwaves (宋淑芳, 邢伟荣. 量子阱太赫兹探测材料设计与生长的研究. 微波学报), 2015,31(6):88-90. [百度学术]
Watanabe T, Boubanga-Tombet S A, Tanimoto Y, et al. InP-and GaAs-Based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging [J]. IEEE Sensors Journal, 2012, 13(1):89-99. [百度学术]
Sun J D, Sun Y F, Wu D M, et al. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor [J]. Applied Physics Letters, 2012, 100(1):465-9. [百度学术]
Franke C, Walther M, Helm M, et al. Two-photon quantum well infrared photodetectors below 6 THz [J]. Infrared Physics & Technology, 2015, 70:30-33. [百度学术]
Zhang Z Z, Fu Z L, Guo X G, et al. 4.3 THz quantum-well photodetectors with high detection sensitivity [J]. Chin. Phys. B, 2018, 27(3):030701. [百度学术]
Spirito D, Coquillat D, Bonis S L D, et al. High performance bilayer-graphene terahertz detectors [J]. Applied Physics Letters, 2014, 104(6):97-105. [百度学术]
LIANG Zhi-Qing, LIU Zi-Ji, JIANG Ya-Dong,et al.High responsivity of terahertz detector based on ultra-thin LiTa03 crystal material[J]. Journal of Infrared and Millimeter Waves (梁志清, 刘子骥, 蒋亚东,等.基于超薄钽酸锂晶体材料高响应太赫兹探测器 [J]. 红外与毫米波学报), 2016,35(5):520-4. [百度学术]
Müller R, Gutschwager B, Hollandt J, et al. Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz [J]. Journal of Infrared Millimeter & Terahertz Waves, 2015, 36(7):654-661. [百度学术]
Mottamchetty V, Chaudhary A K. Improvised design of THz spectrophotometer using LT-GaAs photoconductive antennas, pyroelectric detector and band-pass filters [J]. Indian Journal of Physics, 2016, 90(1):73-78. [百度学术]
Efthymiou S, Ozanyan K B. Sensing of pulsed radiation with pyroelectric detectors [C]. Sensors. IEEE, 2010:1372-1376. [百度学术]
Chen S L, Chang Y C, Zhang C, et al. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite [J]. Nature Photonics, 2014, 8(7):537-542. [百度学术]
WANG Yue. Research on radiation and scattering of carbon nanotubes at terahertz region [D]. Harbin Institute of Technology (王玥. 碳纳米管太赫兹波辐射与散射研究. 哈尔滨工业大学)2011. [百度学术]
Liu H, Chen Z, Chen X, et al. Terahertz photodetector arrays based on a large scale MoSe2 monolayer [J]. Journal of Materials Chemistry C, 2016, 4(40):9399-9404. [百度学术]
Liu Y, Yin J, Wang P, et al. High-Performance Ultra-Broadband Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films [J]. ACS applied materials & interfaces, 2018, 10(42): 36304-11. [百度学术]
He X, Fujimura N, Lloyd J M, et al. Carbon nanotube terahertz detector [J]. Nano Letters, 2014, 14(7):3953-3958. [百度学术]
Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors [J]. Nature Materials, 2012, 11(10):865-71. [百度学术]
Qin H, Sun J, He Z, et al. Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling [J]. Carbon, 2017, 121:235-241. [百度学术]
Wanlong G , Lin W , Xiaoshuang C , et al. Graphene-based broadband terahertz detector integrated with a square-spiral antenna[J]. Optics Letters, 2018, 43(8):1647-50. [百度学术]
Liu C , Wang L , Chen X , et al. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection[J]. Carbon, 2018, 130:233-40. [百度学术]
Chen M, Wang Y, Wen J, et al. Annealing Temperature-Dependent Terahertz Thermal-Electrical Conversion Characteristics of Three-Dimensional Microporous Graphene [J]. ACS applied materials & interfaces, 2019, 11(6): 6411-20. [百度学术]
Viti L, Hu J, Coquillat D, et al. Black Phosphorus Terahertz Photodetectors [J]. Advanced Materials, 2015, 27(37):5567-72. [百度学术]
Deng X Y, Deng X H, Su F H, et al. Broadband ultra-high transmission of terahertz radiation through monolayer MoS2 [J]. Journal of Applied Physics, 2015, 118(22):224304. [百度学术]
Vitl L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes [J]. Nanoscale, 2019, 11(4): 1995-2002. [百度学术]
Vitl L, Hu J, Coquillat D, et al. Heterostructured hBN-BP-hBN Nanodetectors at Terahertz Frequencies [J]. Adv Mater, 2016, 28(34): 7390-6. [百度学术]
Tang W, Politano A, Guo C, et al. Ultrasensitive Room-Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator [J]. Advanced Functional Materials, 2018,28(31): 1801786. [百度学术]
Brems M R , Paaske J , Lunde A M , et al. Strain-enhanced optical absorbance of topological insulator films[J]. Physical Review B, 2018, 97(8):081402. [百度学术]
Lawal A , Shaari A , Ahmed R , et al. First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector[J]. Physica B: Condensed Matter, 2017:520(69-75). [百度学术]
Yang J, Yu W, Pan Z, et al. Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity [J]. Small, 2018, 14(37):1802598. [百度学术]
Hu W D, Wang L, Chen X S, et al. Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain [J]. Optical & Quantum Electronics, 2013, 45(7):713-720. [百度学术]
Spisser H, Grimault-Jacquin A S, Zerounian N, et al. Room-temperature AlGaN/GaN terahertz plasmonic detectors with a zero-bias grating [J]. Journal of Infrared Millimeter & Terahertz Waves, 2015, 43(3):1-15. [百度学术]
TU Xue-Cou. Terahertz detectors based on Nb5N6 thin film microbolometer [D]. Nanjing University (涂学凑. Nb5N6 microbolometer太赫兹检测器. 南京大学), 2014. [百度学术]
Jiang Y, Jin B B, Xu W W, et al. Terahertz detectors based on superconducting hot electron bolometers [J]. Science China(Information Sciences), 2012, 55(1):64-71. [百度学术]
Seliverstov S, Maslennikov S, Ryabchun S, et al. Fast and sensitive terahertz direct detectorbased on superconducting antenna-coupled hot electron bolometer [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3):1-4. [百度学术]
Chen X, Liu H, Li Q, et al. Terahertz detectors arrays based on orderly aligned InN nanowires [J]. Scientific Reports, 2015, 5:13199. [百度学术]
Saito K, Tanabe T, Oyama Y. Terahertz-wave detection in a GaP-based hybrid waveguide using a nonlinear optical parametric process [J]. Journal of the Optical Society of America B, 2015, 32(4):708-713. [百度学术]
Min W R, Lee J S, Kim K S, et al. High-performance plasmonic THz detector based on asymmetric FET with vertically integrated antenna in CMOS technology [J]. IEEE Transactions on Electron Devices, 2016, 63(4):1742-1748. [百度学术]
Domingues S, Perenzoni D, Perenzoni M, et al. CMOS integrated lock-in readout circuit for FET terahertz detectors [J]. Journal of Infrared Millimeter & Terahertz Waves, 2017, 38: 679-688. [百度学术]
Alves F, Grbovic D, Kearney B, et al. Bi-material terahertz sensors using metamaterial structures[J]. Optics Express, 2013, 21(11):13256-71. [百度学术]
GOU Jun. Research on room temperature terahertz detector based on VOx microbolometer [D].University of Electronic Science and Technology of China (苟君. 基于氧化钒辐射热计的室温太赫兹探测器研究. 电子科技大学)2014. [百度学术]
LUO Zhen-Fei, ZHOU Xun, LI Ze-Yu. Terahertz detectors based on the thermal sensing characteristics of vanadium oxides[J]. Journal of Terahertz Science and Electronic Information Technology (罗振飞, 周逊, 李赜宇. 基于氧化钒热敏特性的太赫兹探测器. 太赫兹科学与电子信息学报), 2013,3:328-31. [百度学术]
WEI Xiao-Ying. Optical and electric characteristic of semiconductor functional films of vanadium oxide and its application[D].Tianjin University (韦晓莹. 氧化钒半导体功能薄膜的光电特性及其应用基础研究. 天津大学), 2014. [百度学术]
LIU Hui-Qiang. Synthesis of ZnO and InN nanomaterials and study on the terahertz detector based on single ZnO nanowire [D]. Southwest University of Science and Technology (刘辉强. ZnO、InN纳米材料的制备及单根ZnO纳米线太赫兹探测器的研究. 西南科技大学), 2015. [百度学术]
LIN Zuo-Ye, LIANG Jiong-Qiang, LIU Han, et al. High mobility ZnO nanowires for terahertz detection applications [J]. Journal of Terahertz Science and Electronic Information Technology (林左叶, 梁炯强, 刘韩,等. 高迁移率ZnO纳米线的太赫兹探测器应用.太赫兹科学与电子信息学报), 2014,12(5):647-52. [百度学术]
Peralta X G, Allen S J, Wanke M C, et al. Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors [J]. Applied Physics Letters, 2002, 81(9):1627-1629. [百度学术]
Wang H X, Fu Z L, Shao D X, et al. Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well [J]. Applied Physics Letters, 2018, 113(17):171107. [百度学术]
Klimenko O A, Knap W, Iniguez B, et al. Temperature enhancement of terahertz responsivity of plasma field effect transistors [J]. Journal of Applied Physics, 2012, 112(1):2465-87. [百度学术]
Han S P, Ko H, Park J W, et al. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner [J]. Optics Express, 2013, 21(22):25874-82. [百度学术]
Vitiello M S, Viti L, Romeo L, et al. Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission [J]. Applied Physics Letters, 2012, 100(24):97. [百度学术]
Vitiello M S, Coquillat D, Viti L, et al. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors [J]. International Journal of High Speed Electronics & Systems, 2012, 12:96-101. [百度学术]
Zak A, Andersson M A, Bauer M, et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene [J]. Nano Letters, 2014, 14(10):5834. [百度学术]
Cai X, Sushkov A B, Suess R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene [J]. Nature Nanotechnology, 2014, 9(10):814-9. [百度学术]
Mittendorff M, Winnerl S, Kamann J, et al. Ultrafast graphene-based broadband THz detector [J]. Applied Physics Letters, 2013, 103(2):666. [百度学术]
Sizov F F, Reva V P, Golenkov A G, et al. Uncooled detectors challenges for THz/sub-THz arrays imaging [J]. Journal of Infrared Millimeter & Terahertz Waves, 2011, 32(10):1192-1206. [百度学术]
HU Xiao-Yan.Research progress and trends of terahertz technology from the view of photonics[J]. Laser & Infrared (胡小燕. 从光子学角度看太赫兹技术的现状和发展趋势. 激光与红外), 2015,7:740-8. [百度学术]
Shurakov A, Lobanov Y, Goltsman G. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical, applications[J]. Superconductor Science & Technology, 2016, 29(2):023001. [百度学术]
Giovine E, Casini R, Dominijanni D, et al. Fabrication of Schottky diodes for terahertz imaging[J]. Microelectronic Engineering, 2011, 88(8):2544-2546. [百度学术]
Darmo J , Dietze D , Martl M , et al. Nonorthodox heterodyne electro-optic detection for terahertz optical systems[J]. Applied Physics Letters, 2011, 2011, 98(16):161112. [百度学术]
Rogalski A, Sizov F. Terahertz detectors and focal plane arrays [J]. Opto-Electronics Review, 2011, 19(3):346-404. [百度学术]
Xu G D , Tsai C S . Novel integrated acousto-optic and electro-optic heterodyning device in a LiNbO3 waveguide[J]. Applied Physics Letters, 1991, 58(1):28. [百度学术]
Qiu F , Xu H , Cao Y, et al. Nonlinear optical materials: Synthesis, characterizations, thermal stability and electro-optical properties[J]. Materials Characterization, 2007, 58(3):275-283. [百度学术]
WU G, TANG L B, Hao Q, et al. Research Progress in the Uncooled Terahertz Imaging Detection Technology[J]. Infrared Technology (吴刚,唐利斌,郝群等.非制冷太赫兹成像探测技术研究进展. 红外技术), 2018, 40(6):5-9. [百度学术]
Klocke D, Schmitz A, Soltner H, et al. Infrared receptors in pyrophilous (“fire loving”) insects as model for new un-cooled infrared sensors [J]. Beilstein Journal of Nanotechnology, 2011, 2(1):186-197. [百度学术]
R A Lewis. A review of terahertz detectors[J]. J. Phys. D: Appl. Phys,2019, 52(43):433001. [百度学术]
Zhao X G, Wang Y, Schalch J, et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. ACS Photonics, 2019, 6(4):830-837. [百度学术]
Wu C Y, ZhouW, YaoN J, et al. Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector[J]. Applied Physics Express,2019, 12(5):052018. [百度学术]
Timofeev A, Luomahaara J, Grönberg L, et al. Optical and electrical characterization of a large kinetic inductance bolometer focal plane array [J]. IEEE Transactions on Terahertz Science & Technology, 2017, PP(99:1-7. [百度学术]
LIU Hai-Rui. Research on quasi-optical detector based on planar schottky diode [D]. Beijing University of Posts and Telecommunications (刘海瑞. 基于平面肖特基二极管的准光检波器研究. 北京邮电大学), 2013. [百度学术]
Maas S A. Nonlinear microwave and RF circuits[M]. Artech House, 2003, 497-535. [百度学术]
Sakhno M, Golenkov A, Sizov F. Uncooled detector challenges: Millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors[J]. Journal of Applied Physics, 2013, 114(16):1-4. [百度学术]
Preu S, Mittendorff M, Winnerl S, et al. THz Autocorrelators for ps pulse characterization based on Schottky Diodes and rectifying field-effect transistors [J]. IEEE Transactions on Terahertz Science & Technology, 2015, 5(6):922-929. [百度学术]
Han S P, Ko H, Park J W, et al. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner [J]. Optics Express, 2013, 21(22):25874-82. [百度学术]
Sakhno M, Sizov F, Golenkov A. Uncooled THz/sub-THz rectifying detectors: FET vs. SBD [J]. Journal of Infrared Millimeter & Terahertz Waves, 2013, 34(12):798-814. [百度学术]
Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states [J]. Nano Letters, 2015, 16(1):80-87. [百度学术]
Kushwaha M. Resonant response of a field-effect transistor to an ac signal [C]. 2005 APS March Meeting. American Physical Society, 2005. [百度学术]
Knap W, Valušis G, Łusakowski J, et al. Field effect transistors for terahertz imaging [J]. Journal of Infrared Millimeter & Terahertz Waves, 2009, 30(12):1319-1337. [百度学术]
Dyakonov M I. Generation and detection of terahertz radiation by field effect transistors [J]. Comptes Rendus Physique, 2012, 11(7):413-420. [百度学术]
Kurita Y, Ducournau G, Coquillat D, et al. Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics [J]. Applied Physics Letters, 2014, 104(25):380. [百度学术]
Coquillat D , Marczewski J , Kopyt P , et al. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction[J]. Optics Express, 2016, 24(1):272-81. [百度学术]
Shalaby M, Vicario C, Hauri C P. Anomalous visualization of sub-2 THz photons on standard silicon CCD and COMS sensors [J]. Physics, 2015. [百度学术]
Cui X, Yang C, Tearney G J. Quantitative differential interference contrast (DIC) microscopy and photography based on wavefront sensors: US, US 8039776 B2 [P]. 2011. [百度学术]
Schuster F, Coquillat D, Videlier H, et al. Broadband terahertz imaging with highly sensitive silicon CMOS detectors [J]. Optics Express, 2011, 19(8):7827-32. [百度学术]
Marczewski J, Knap W, Tomaszewski D, et al. Silicon junctionless field effect transistors as room temperature terahertz detectors [J]. Journal of Applied Physics, 2015, 118(104502). [百度学术]
Slocombe L.L., Lewis R.A. Electrical versus optical: comparing methods for detecting terahertz radiation using neon lamps[J]. J Infrared Milli Terahz Waves, 2018, 39(8): 701. [百度学术]
Ezawa J, Matsuo H, Ukibe M, et al. Studies on terahertz photon counting detectors with low-leakage SIS junctions[J]. Journal of Low Temperature Physics, 2019, 194(5):426-432. [百度学术]
XU Qin-Yin. Nb-based superconducting tunnel junction terahertz direct detector [D]. Nanjing University (许钦印. 铌基超导隧道结太赫兹直接检测器. 南京大学), 2013. [百度学术]
Dyer G C, Preu S, Aizin G R, et al. Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity [J]. Applied Physics Letters, 2012, 100(8):405. [百度学术]
Jha K R, Singh G. Terahertz planar antennas for future wireless communication: A technical review [J]. Infrared Physics & Technology, 2013, 60(5):71-80. [百度学术]
Yurduseven O, Llombart N, Neto A, et al. A dual polarized antenna for THz space applications: Antenna design and lens optimization[C]. Antennas and Propagation Society International Symposium. IEEE, 2014:191-192. [百度学术]
Yurduseven O, Llombart N, Neto A, et al. A dual polarized antenna for THz space applications: Antenna design and lens optimization[C]. Antennas and Propagation Society International Symposium. IEEE, 2014:191-192. [百度学术]
Grzyb J, Al Hadi R, Pfeiffer U R. Lens-integrated on-chip antennas for THz direct detectors in SiGe HBT technology [C]. Antennas and Propagation Society International Symposium. IEEE, 2013:2265-2266. [百度学术]
Liu J, Zou S, Yang Z, et al. Wave shape recovery for terahertz pulse field detection via photoconductive antenna [J]. Optics Letters, 2013, 38(13):2268. [百度学术]
Wang N, Jarrahi M. Broadband heterodyne terahertz detector based on plasmonic photomixing [C]. International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE, 2016:1-2. [百度学术]
Guo D L, Mou J C, Zhao-Hui M A, et al. A broadband terahertz quasi-optical detector utilizing lens-based antenna [J]. Journal of Infrared & Millimeter Waves, 2016,4:389-393. [百度学术]
Guo W, Wang L, Chen X, et al. Graphene-based broadband terahertz detector integrated with a square-spiral antenna [J]. Optics Letters, 2018, 43(8):1647-1650. [百度学术]
Bauer M, Rämer A, Boppel S, et al. High-sensitivity wideband THz detectors based on GaN HEMTs with integrated bow-tie antennas [C]. Microwave Integrated Circuits Conference. IEEE, 2015. [百度学术]
ZHU Ying-Jie. Study on optimization design of CMOS terahertz detector [D]. Nanjing University (朱颖杰. CMOS太赫兹探测器的优化设计研究. 南京大学), 2016. [百度学术]
JIANG Cheng-Yue. Generation and detection of terahertz wave using a parametric process in lithium niobate [D]. Huazhong University of Science & Technology (蒋呈阅. 基于铌酸锂晶体参量过程产生与探测太赫兹波. 华中科技大学), 2013. [百度学术]
Liu Z, Liu L, Zhang Z, et al. Terahertz detector for imaging in 180 nm standard CMOS process [J]. Science China(Information Sciences), 2017, 60(8):082401. [百度学术]
Wang C, Qin J Y, Xu W D, et al. Terahertz Imaging Applications in Agriculture and Food Engineering: A Review [J]. Transactions of the ASABE, 2018, 61(2): 411-24. [百度学术]
Guillet J P, Recur B, Balacey H, et al. Low-frequency noise effect on terahertz tomography using thermal detectors [J]. Applied Optics, 2015, 54(22):6758-62. [百度学术]
YANG Guang-Kun, YUAN Bin, XIE Dong-Yan. Analysis on the use of THz technology in the military application[J]. Laser & Infrared (杨光鲲, 袁斌, 谢东彦. 太赫兹技术在军事领域的应用. 激光与红外), 2011,41(4):376-80. [百度学术]
MIN Bi-Bo,ZENG Chang-E,YIN Xin, et al.Application of terahertz techniques in military and space [J]. Journal of Terahertz Science and Electronic Information Technology (闵碧波, 曾嫦娥, 印欣,等. 太赫兹技术在军事和航天领域的应用. 太赫兹科学与电子信息学报), 2014,12(3):351-4. [百度学术]
Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research [J]. Journal of Infrared Millimeter & Terahertz Waves, 2011, 32(2):143-171. [百度学术]