en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
Offner A. Unit power imaging catoptric anastigmat: US, 3748015[P]. 1973.
参考文献 2
Wynne C G. Optical imaging systems: US, 4796984[P]. 1989.
参考文献 3
Chrisp M P. Convex diffraction grating imaging spectrometer: US, 5880834[P]. 1999.
参考文献 4
Mertz L. Concentric spectrographs [J]. Applied Optics, 1977, 16(12):3122.
参考文献 5
Kwo D, Lawrence G, Chrisp M. Design of a grating spectrometer from a 1:1 Offner mirror system [J]. Proceedings of SPIE, 1987, 818:275-281.
参考文献 6
Prieto-Blanco X, Montero-Orille C, Couce B, et al. Analytical design of an Offner imaging spectrometer [J]. Optics Express, 2006, 14(20):9156-68.
参考文献 7
Lobb D R. Theory of concentric designs for grating spectrometers [J]. Applied Optics, 1994, 33(13):2648.
参考文献 8
Dan R L. Design of a spectrometer system for measurements on earth atmosphere from geostationary orbit [J]. Proceedings of SPIE, 2004,5249:191-202.
参考文献 9
Prieto-Blanco X, Fuente R D L. Compact Offner–Wynne imaging spectrometers [J]. Optics Communications, 2014, 328(10):143-150.
参考文献 10
Reimers J, Schiesser E M, Thompson K P, et al. Comparison of freeform imaging spectrometer design forms using spectral full-field displays [C]// OSA Technical Digest: Freeform Optics. 2015:FM3B.3.
参考文献 11
Wei L, Feng L, Zhou J, et al. Optical design of Offner-Chrisp imaging spectrometer with freeform surfaces [C]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2016:100211P.
参考文献 12
Risse S, Krutz D. Design of an imaging spectrometer for earth observation using freeform mirrors [C]// ISCO:International Conference on Space Optics, 2016:161.
参考文献 13
Marchi A Z, Borguet B, Marchi A Z, et al. Freeform grating spectrometers for hyperspectral space applications: status of ESA programs [C]// OSA Technical Digest: Freeform Optics. 2017:JTh2B.5.
参考文献 14
Reimers J, Bauer A, Thompson K P, et al. Freeform spectrometer enabling increased compactness[J]. Light Science & Applications, 2017, 6(7):e17026.
参考文献 15
Cheng D, Yang T, Wang Y. Freeform imaging spectrometer design using a point-by-point design method [J]. Applied Optics, 2018, 57(16):4718.
参考文献 16
Whyte C, Leigh R J, Lobb D, et al. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy[J]. Atmospheric Measurement Techniques, 2009, 2(2):789-800.
参考文献 17
Zhang L F, Xu C R, Gao jun, et al. Recent advances in Chinese Spaceborne Hyperspectral Missions [C]// IEEE-IGARSSISIS TC Presentations-International Spaceborne Imaging Spectroscopy Missions: Updates and News II, 2015.
参考文献 18
Coppo P, Taiti A, Pettinato L, et al. Fluorescence imaging spectrometer (FLORIS) for ESA FLEX mission [J]. Remote Sensing, 2017, 9(7):649.
参考文献 19
Parks R E, Kuhn W P. Optical alignment using the Point Source Microscope [C]// International Society for Optics and Photonics, 2005:58770B-58770B-15.
参考文献 20
Reimers J, Thompson K, Whiteaker K L, et al. Spectral full-field displays for spectrometers[C]// International Society for Optics and Photonics, 2014:92930O-92930O-5.
目录 contents

    摘要

    为提高高光谱遥感仪器的幅宽和减小其体积,重点研究适用于宽幅高光谱遥感应用的长狭缝、紧凑型Wynne-Offner光谱仪。通过追迹主光线,导出像散表达式,分析Offner装架和Wynne-Offner光装架的像散特性。指出Wynne-Offner装架的消像散圆域大于Offner装架的消像散圆环域,前者更适用于长狭缝。给出两个光谱仪实例,狭缝长度均为70 mm,分别工作于0.5~1.0 μm和1.0~2.5 μm波长范围,成像质量接近于衍射极限,光谱畸变可忽略,具备狭缝长、结构紧凑、像质优的特点,适用于宽幅高光谱遥感应用。

    Abstract

    In order to increase the swath width and reduce the volume of hyperspectral remote sensing instruments, the compact, long-slit Wynne-Offner spectrometers suitable for wide swath width were detailedly studied. By tracing the chief ray, expressions of the astigmatism were deduced, and the astigmatism of the Offner configuration and the Wynne-Offner configuration were analyzed. It was pointed out that the anastigmatic circle domain of the Wynne-Offner configuration is larger than that of the Offner configuration, and the former was more suitable for long slit. Two examples of spectrometers were given. Length of their slits are both 70 mm, and they worked in the wavelength range of 0.5~1.0 μm and 1.0~2.5 μm respectively. The imaging quality was close to the diffraction limit, and the spectral distortion was negligible. Such Wynne-Offner spectrometers have the advantages of long slit, compact structure and high imaging quality, and it is really suitable for the remote sensing applications with wide swath width.

  • 引言

    高光谱遥感技术广泛应用于防灾减灾、环境监测、矿物勘探、军事侦查等领域,随着各应用领域对宽地面覆盖的需求日益增长,要求成像光谱仪分光系统往长狭缝的方向发展。本文重点研究Wynne-Offner光谱仪,它具备狭缝长、结构紧凑、成像质量优、无光谱畸变等特点。

    Wynne-Offner光谱仪由Offner光谱仪发展而来。1973年,Abe Offner[1]首次提出用两块同心球面反射镜,构成 1:1倍率的中继扫描光刻系统,该中继系统可在圆环域具有最佳成像质[1,2,3]。L. Mertz[4]和Kwo[5]等将Offner中继系统中的凸面反射镜替换成凸面衍射光栅,构成Offner分光装架,它继承了Offner中继系统的性能,在最佳成像圆环域初级像差皆被消除,仅剩余五级像散。1999年,Chrisp[3]提出将经典Offner分光装架的凹球面反射镜拆分成两块非共面反射镜,并轻微离轴和倾斜,打破原有的同心性,增加设计自由度,进一步提升像质和增大谱面宽度。2006年,X. Prieto-Blanco[6]等给出了Offner光谱仪的分析设计方法,能够快速设计出高成像质量的Offner光谱仪,指出其主要剩余像差为像散。由于Offner光谱仪可在圆环域获得高成像质量,因此狭缝在该区域时光谱成像性能优越,而超出此区域时有较大像差。1989年,Wynne[2]为扩大Offner中继系统最佳成像区域范围,在凸面镜前加入同心弯月透镜校正主光线球差,增加了最佳成像区域范围。Lobb[7]利用这一特性,在Offner分光装架凸面衍射光栅前加入弯月透镜,设计了结构紧凑的大谱面光谱[8]。2014年,X. Prieto-Blanco[9]等通过追迹主光线,证明Wynne-Offner光谱仪可在两个不同的离轴位置满足远心条件,指出它具有狭缝长、结构紧凑、成像质量优、光谱畸变小的特点。最近,基于自由曲面的Offner光谱[10,11,12,13,14,15]逐渐成为研究热点,它结构紧凑、狭缝长、像差校正能力强,但自由曲面光栅的加工和检测十分困难,短期内难以得到广泛的工程应用。Wynne-Offner光谱仪仅含球面光学元件,研制难度小、成本低、周期短,已应用于高光谱遥感[16,17,18]。目前关于Wynne-Offner光谱仪的报道多为光学设计软件的优化结果,未见基于像差理论的分析设计报道。本文第2部分利用主光线追迹方法,导出Offner分光装架和Wynne-Offner分光装架的像散表达式,指出后者更适用于长狭缝,并给出它的设计流程;第3部分给出两个长狭缝Wynne-Offner光谱仪实例,验证了Wynne-Offner光谱仪在校正像差和减小体积方面明显优于经典Offner光谱仪;第4部分给出总结与结论。

  • 1 理论分析

    为说明Wynne-Offner分光装架的消像散性能,通过主光线追迹方法,利用罗兰圆条件和杨氏公式求得子午和弧矢像点位置,给出Offner分光装架和Wynne-Offner分光装架的像散表达式,讨论两者像散特性并指出Wynne-Offner分光装架的性能优势。最后根据Wynne-Offner分光装架消像散时系统参数的内在联系,给出其设计流程。

  • 1.1 Offner分光装架像散分析

    Offner分光装架狭缝上任一点成像光路如图1所示,C为主镜M1、凸面衍射光栅G和三镜M3的公共球心,O为狭缝上任一点,O0为狭缝中心,以C为原点建立图示直角坐标系,狭缝和光栅刻线均平行于x轴。图1(a)为入射光路图,yO'Cz为入射面,从狭缝上任以一点O入射的主光线在M1的入射角为θ1,在G的入射角为θ2OCyO'轴夹角为物极角φ,M1的子午和弧矢像点分别为IM1IS1,弧矢像极角为φ'S1图1(b)为出射光路图,yI'Cz为出射面,主光线在G的衍射角为θ2',在M3的入射角为θ3,M3的弧矢物点为IS2,弧矢物极角为φ'S2,子午和弧矢像点分别为IMIS,像极角分别为φ'Mφ'S。由杨氏弧矢成像式(6)可推得

    φ'S1=φφ'S2=φ'S ,
    (1)
    html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F002.png
    html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F003.png
    html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F004.png
    html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F005.png
    html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F006.png

    图1 Offner分光装架狭缝上任一点成像光路图(a)入射光路,(b)出射光路,(c)系统轴向视图,(d)光栅主截面内投影,(e)垂直于光栅主截面的投影

    Fig. 1 Light path of Offner configuration from any point on the slit

    图1(a)和(b)中,设M1、G、M3的曲率半径分别为R1R2R3,子午成像满足罗兰圆条件时

    OC=R1sinθ1=R2sinθ2 ,
    (2)
    CIM=R2sinθ2'=R3sinθ3 ,
    (3)
    φ=θ2-2θ1 ,
    (4)
    φ'M=2θ3-θ2' .
    (5)

    图1(c)为分光装架轴向视图,γ为主光线入射光栅的方位角,γ'为衍射方位角。O点发出的主光线在G处满足空间光栅方程

    sinθ2'cosγ'-sinθ2cosγ=mgλsinθ2'sinγ'-sinθ2sinγ=0 ,
    (6)

    光栅衍射光路可投影为主截面内的共面衍射和垂直于主截面的反射,如图1(d)和图1(e)。在图1(d)中,入射角为α,衍射角为α',子午物点为IM1⊥,子午像点为IM2⊥,弧矢物点为IS1⊥,弧矢像点为IS2⊥,弧矢物极角为φ'S1⊥,弧矢像极角为φ'S2⊥。在图1(e)中,入射角为β,反射角为β',子午物点为IM1∥,子午像点为IM2∥,弧矢物点为IS1∥,弧矢像点为IS2∥,弧矢物极角为φ'S1∥,弧矢像极角为φ'S2∥xCz面内角度满足如下关系

    β=β' ,
    (7)
    tanφ'S1=tanφ'S1sinγtanφ'S2=tanφ'S2sinγ' ,
    (8)
    sinβtanφ'S1=sinβ'tanφ'S2 .
    (9)

    由式(1)和式(7-9)可推得φ'Sφ满足关系如下

    tanφ'S=tanφsinγsinγ' ,
    (10)

    Offner分光装架狭缝上任一点像散为

    astigOffner=CIMtanφ'S-φ'M .
    (11)

    满足φ'S=φ'M即可消像散,一个特殊解为φ'S'M =φ=0,此时物方、像方主光线平行于光轴,物、像方远心。设任一物点坐标为Ox,y),k =x2+ y2/R2k1=R1/R2。以kk1为变量,由式(2-6)和式(10),可将像散表达式(11)中的三项参量具体表示为

    CIM=kR2sinγsinγ' ,
    (12)
    φ'S=arctansinγ'sinγtanarcsink-2arcsinkk1 ,
    (13)
    φ'M=2arcsinkk1sinγsinγ'-arcsinksinγsinγ' .
    (14)

    设Offner分光装架R1=R3g=200 lp/mm,m= -1,λ=600 nm,优选k1和狭缝离轴量y,当k1=R1/R2=1.91,y/R2 =0.605时,狭缝中心消像散,但像散随狭缝长度增大而迅速增大,如图2所示。

    图2
                            Offner分光装架像散随狭缝半长度变化曲线

    图2 Offner分光装架像散随狭缝半长度变化曲线

    Fig. 2 Astigmatism of the Offner spectrometer varied with the slit length

  • 1.2 Wynne-Offner分光装架像散分析

    Wynne-Offner分光装架任一物点成像光路如图3所示,分光装架凹面反射镜M、凸面衍射光栅G和弯月透镜L的前后表面共球心,球心为C。设G与L凸面共面,曲率半径为R2,L凹面曲率半径为R1,M曲率半径为R3图3(a)为入射光路图,狭缝上任一点Ox,y)发出的主光线在L凹面的入射角为θ1

    html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F009.png
    html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F010.png

    图3 Wynne-Offner分光装架任意物点成像光路图(a)入射光路,(b)出射光路

    Fig. 3 Light path of Wynne-Offner configuration from any point on the slit

    折射角为θ1',在L凸面的入射角为θ2、折射角为θ2',在M的入射角为θ3,在G的入射角为θ4O1O2O3分别为L凹面、L凸面和M对应的罗兰圆,点EF分别为L凹面和L凸面对O点成的子午虚像点,E为圆O1O2的交点,F为圆O2O3的交点。入射光路中子午和弧矢像点分别为IM1IS1,物极角和弧矢像极角分别为φφ'S1,由几何关系得

    φ=2θ3+θ2+θ1-θ4-θ'2-θ'1 ,
    (15)

    由罗兰圆条件和斯涅耳定律可推得

    OC=R1sinθ1=R1nsinθ'1=R2nsinθ2=R2sinθ'2=R3sinθ3=R2sinθ4 ,
    (16)

    其中n为弯月透镜折射率。图3(b)为出射光路图,光栅处衍射角为θ4',衍射后主光线在M的入射角为θ5,在L凸面的入射角为θ6'、折射角为θ6,在L凹面的入射为θ7'、折射角为θ7。出射光路中子午和弧矢像点分别为IMIS,子午像极角和弧矢像极角分别为φ'Mφ'Sφ'Mφ'S和CIM满足如下等式

    φ'M=θ4'+θ'6+θ'7-2θ5-θ6-θ7 ,
    (17)
    CIM=R1sinθ7=R1nsinθ'7=R2nsinθ6=R2sinθ'6=R3sinθ5=R2sinθ4' ,
    (18)
    tanφ'S=tanφsinγsinγ' ,
    (19)

    其中γγ' 满足空间光栅方程

    sinθ4'cosγ'-sinθ4cosγ=mgλsinθ4'sinγ'-sinθ4sinγ=0 ,
    (20)

    Wynne-Offner分光装架像散可表示为

    astigWynne-Offner=CIMtanφ'S-φ'M .
    (21)

    设任一物点坐标为Ox,y),k' =x2+ y2/R2k1' =R3/R2k2' =R1/R2。以k'k1'k2'为变量,由式(15-20),可将像散表达式(21)中的三项参量具体表示为

    CIM=k'R2sinγsinγ' ,
    (22)
    φ'S=arctansinγ'sinγtan2arcsink'k1'+arcsink'n+arcsink'k2'-2arcsink-arcsink'nk2' ,
    (23)
    φ'M=2arcsink'sinγsinγ'+arcsink'nk2'sinγsinγ'-2arcsink'k1'sinγsinγ'          -arcsink'nsinγsinγ'-arcsink'k2'sinγsinγ' .
    (24)

    λ=600 nm,m= -1,g=200 lp/mm,优选k1'k2',当k1' =2.15,k2' =0.814时,Wynne-Offner分光装架物面对应的像散分布如图4(a),物点在圆域内消像散,适用于长狭缝,消像散阈值为0.002。

    html/hwyhmbcn/180471/media/3baa5010-45e0-414b-bce9-318a8899db07-image009.png
    html/hwyhmbcn/180471/media/3baa5010-45e0-414b-bce9-318a8899db07-image010.png

    图4 分光装架物面消像散范围(a)Wynne-Offner分光装架,(b)Offner分光装架

    Fig.4 Anastigmatic area of the spectrometer (a) Wynne-Offner type, (b) Offner type

    在2.1节中讨论的Offner分光装架物面对应像散分布如图4(b),物点仅在光轴附近和离轴圆环域消像散,消像散的狭缝长度短。图5为两种分光装架像散随狭缝长度的变化曲线,横坐标为归一化狭缝半长度,纵坐标为归一化像散,Offner分光装架狭缝离轴量为0.6R2,Wynne-Offner分光装架狭缝离轴量为0.4 R2。由图可知,Wynne-Offner分光装架在长狭缝范围内像散趋于零,消像散的狭缝长度远大于Offner分光装架。

    图5
                            两种分光装架狭缝长度方向像散

    图5 两种分光装架狭缝长度方向像散

    Fig. 5 Astigmatism of two spectrometers along the slit

  • 1.3 Wynne-Offner光谱仪设计流程

    由式(21-24),消像散时Wynne-Offner光谱仪狭缝半长度x和结构因子k1'k2' 的关系如图6所示。不同曲线表示不同k2' 值,曲线与横轴平行部分越长,对应的消像散狭缝长度越长。

    图6
                            Wynne-Offner光谱仪消像散时x与k1',k2'关系(狭缝离轴量为y=0.4R2)

    图6 Wynne-Offner光谱仪消像散时xk1'k2'关系(狭缝离轴量为y=0.4R2

    Fig. 6 Relationships between x, k1' and k2' when the Wynne-Offner spectrometer is anastigmatic

    输入狭缝长度指标,可由图6初步确定Wynne-Offner光谱仪结构因子k1'k2'。文献[6]给出了Offner光谱仪光栅半径与系统指标之间的关系,同样适用于Wynne-Offner光谱仪:

    R2=hspecmgΔλ ,
    (25)

    其中hspec为光谱仪谱面宽度,∆λ为谱段宽度。图7给出了Wynne-Offner光谱仪光学系统设计流程图,可由输入的指标mhspec,∆λg和狭缝长度来确定系统结构参数,即狭缝离轴量y,弯月透镜凹面半径R1,凸面光栅半径R2和凹球面反射镜半径R3

    图7
                            Wynne-Offner光谱仪光学系统设计流程图

    图7 Wynne-Offner光谱仪光学系统设计流程图

    Fig. 7 Steps for designing the Wynne-Offner spectrometer

  • 2 设计实例

    为验证Wynne-Offner光谱仪在长狭缝时的消像散性能,优化设计了两个光谱仪光学系统,分别工作于0.5~1.0 μm(VNIR)和1.0~2.5 μm(SWIR)波长范围,利用图7流程求得初始结构,借助Zemax软件优化光学系统。图8为设计的两台光谱仪光学系统光路图和轴向视图,S为狭缝,IMAG为谱面,表1给出了这两台光谱仪光学系统的主要指标和性能参数。

    图8
                            VNIR和SWIR光谱仪(a)VNIR光谱仪光路图,(b)VNIR光谱仪轴向视图,(c)SWIR光谱仪光路图,(d)SWIR光谱仪轴向视图

    图8 VNIR和SWIR光谱仪(a)VNIR光谱仪光路图,(b)VNIR光谱仪轴向视图,(c)SWIR光谱仪光路图,(d)SWIR光谱仪轴向视图

    Fig. 8 VNIR and SWIR spectrometers (a) VNIR spectrometer, (b) Axial view of the VNIR spectrometer, (c) SWIR spectrometer, (d) Axial view of the SWIR spectrometer

    表1 VNIR和SWIR光谱仪指标及性能参数

    Table1 Specifications and parameters of the VNIR and SWIR spectrometers

    指标及性能VNIRSWIR
    光谱范围/μm0.5-1.01.0-2.5
    狭缝长度/mm7035×2
    狭缝间隔/mm——7
    谱面宽度/mm96×2
    F数2.72.7
    光栅槽密度/ lp·mm-117037.7
    光栅衍射级次-1-1
    R1 /mm82.7587.90
    R2 /mm98.62106.11
    R3 /mm207.64225.05
    球心最大偏离/mm0.060.14
    狭缝离轴量/mm52.746.6,53.6
    尺寸/mmΦ111×207Φ114×225
    RMS点列图直径/μm<6<16
    Smile /μm<0.053<0.12
    Keystone /μm<0.053<0.10

    图8(a-b)分别为VNIR光谱仪的光路图和轴向视图,该光谱仪为平面对称系统,狭缝长度为70 mm,相对孔径大,系统无遮拦。根据表1中数据,狭缝归一化离轴量为0.534,结构因子k1' =2.105,k2' =0.839。该分光装架具有接近衍射极限的成像质量,光谱范围内RMS点列图直径小于6 μm,并且具有可忽略的光谱畸变,Smile和Keystone均小于0.053 μm。图8(c-d)分别为SWIR光谱仪的光路图和轴向视图,该光谱仪双狭缝S1、S2总长70 mm,垂直狭缝方向间隔7 mm。根据表1中数据,SWIR光谱仪结构因子k1' =2.121,k2' =0.828,狭缝S1和S2的归一化离轴量分别为0.439和0.505,该光谱仪RMS点列图直径小于16 μm,成像质量好,Smile和Keystone均不足0.12 μm,光谱畸变小。两台光谱仪结构紧凑,各光学表面同心度高,借助点源显微[19]易将弯月透镜和凹球面反射镜的相对位置固定。

    为直观表现Wynne-Offner光谱仪的像差校正能力,优化设计了同指标的VNIR波段Offner光谱仪,并给出光谱全视场图SFFD(Spectral Full-Field Display)[20],用于展现整个谱面内的像差分布情况,如图9。保持体积相同时,Offner光谱仪剩余波像差和像散SFFD分别由图9(a-b)给出;Wynne-Offner光谱仪剩余波像差和像散SFFD分别由图9(c-d)给出。由图可见,Offner光谱仪剩余波像差和像散随狭缝增长而迅速增大,在谱面内极不均匀,剩余波像差均方值最大为1.56λ,剩余像散最大为131 μm。Wynne-Offner光谱仪剩余波像差和像散在谱面内小且均匀,剩余波像差均方值最大为0.11λ,仅为Offner光谱仪的7%,剩余像散最大为13 μm,仅为Offner光谱仪的10%。同时还设计了像质接近衍射极限的Offner光谱仪,其体积约为Wynne-Offner光谱仪的3.3倍,因此采用Wynne-Offner光谱仪可在不降低像质的情况下大大缩小体积,这在航天遥感应用中是极为重要的。

    图9
                            光谱仪SFFD(a)Offner光谱仪剩余波像差SFFD,(b)Offner光谱仪剩余像散SFFD,(c)Wynne-Offner光谱仪剩余波像差SFFD,(d)Wynne-Offner光谱仪剩余像散SFFD

    图9 光谱仪SFFD(a)Offner光谱仪剩余波像差SFFD,(b)Offner光谱仪剩余像散SFFD,(c)Wynne-Offner光谱仪剩余波像差SFFD,(d)Wynne-Offner光谱仪剩余像散SFFD

    Fig. 9 SFFD(Spectral Full-Field Display) of spectrometers (a) RMS wavefront error of Offner spectrometer, (b) Astigmatism of Offner spectrometer, (c) RMS wavefront error of Wynne-Offner spectrometer, (d) Astigmatism of Wynne-Offner spectrometer

  • 3 结论

    本文通过主光线追迹法,导出了Offner装架和Wynne-Offner装架的像散表达式,讨论了两者像散特性,指出Wynne-Offner装架的消像散圆域大于Offner装架的消像散圆环域,前者更适用于长狭缝。根据消像散条件,给出了Wynne-Offner光谱仪的设计流程。通过优化设计与比较,验证了Wynne-Offner装架在校正像差和减小体积方面明显优于经典Offner装架。这种Wynne-Offner光谱仪具备狭缝长、相对孔径大、无光谱畸变、结构紧凑、像质优、易装调的特点,十分适用于宽幅高光谱遥感应用。

  • References

    • 1

      Offner A. Unit power imaging catoptric anastigmat: US, 3748015[P]. 1973.

    • 2

      Wynne C G. Optical imaging systems: US, 4796984[P]. 1989.

    • 3

      Chrisp M P. Convex diffraction grating imaging spectrometer: US, 5880834[P]. 1999.

    • 4

      Mertz L. Concentric spectrographs [J]. Applied Optics, 1977, 16(12):3122.

    • 5

      Kwo D, Lawrence G, Chrisp M. Design of a grating spectrometer from a 1:1 Offner mirror system [J]. Proceedings of SPIE, 1987, 818:275-281.

    • 6

      Prieto-Blanco X, Montero-Orille C, Couce B, et al. Analytical design of an Offner imaging spectrometer [J]. Optics Express, 2006, 14(20):9156-68.

    • 7

      Lobb D R. Theory of concentric designs for grating spectrometers [J]. Applied Optics, 1994, 33(13):2648.

    • 8

      Dan R L. Design of a spectrometer system for measurements on earth atmosphere from geostationary orbit [J]. Proceedings of SPIE, 2004,5249:191-202.

    • 9

      Prieto-Blanco X, Fuente R D L. Compact Offner–Wynne imaging spectrometers [J]. Optics Communications, 2014, 328(10):143-150.

    • 10

      Reimers J, Schiesser E M, Thompson K P, et al. Comparison of freeform imaging spectrometer design forms using spectral full-field displays [C]// OSA Technical Digest: Freeform Optics. 2015:FM3B.3.

    • 11

      Wei L, Feng L, Zhou J, et al. Optical design of Offner-Chrisp imaging spectrometer with freeform surfaces [C]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2016:100211P.

    • 12

      Risse S, Krutz D. Design of an imaging spectrometer for earth observation using freeform mirrors [C]// ISCO:International Conference on Space Optics, 2016:161.

    • 13

      Marchi A Z, Borguet B, Marchi A Z, et al. Freeform grating spectrometers for hyperspectral space applications: status of ESA programs [C]// OSA Technical Digest: Freeform Optics. 2017:JTh2B.5.

    • 14

      Reimers J, Bauer A, Thompson K P, et al. Freeform spectrometer enabling increased compactness[J]. Light Science & Applications, 2017, 6(7):e17026.

    • 15

      Cheng D, Yang T, Wang Y. Freeform imaging spectrometer design using a point-by-point design method [J]. Applied Optics, 2018, 57(16):4718.

    • 16

      Whyte C, Leigh R J, Lobb D, et al. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy[J]. Atmospheric Measurement Techniques, 2009, 2(2):789-800.

    • 17

      Zhang L F, Xu C R, Gao jun, et al. Recent advances in Chinese Spaceborne Hyperspectral Missions [C]// IEEE-IGARSSISIS TC Presentations-International Spaceborne Imaging Spectroscopy Missions: Updates and News II, 2015.

    • 18

      Coppo P, Taiti A, Pettinato L, et al. Fluorescence imaging spectrometer (FLORIS) for ESA FLEX mission [J]. Remote Sensing, 2017, 9(7):649.

    • 19

      Parks R E, Kuhn W P. Optical alignment using the Point Source Microscope [C]// International Society for Optics and Photonics, 2005:58770B-58770B-15.

    • 20

      Reimers J, Thompson K, Whiteaker K L, et al. Spectral full-field displays for spectrometers[C]// International Society for Optics and Photonics, 2014:92930O-92930O-5.

朱嘉诚

机 构:

1. 苏州大学 光电科学与工程学院 教育部现代光学技术重点实验室,江苏 苏州 215006

2. 苏州大学 光电科学与工程学院 江苏省先进光学制造技术重点实验室,江苏 苏州 215006

Affiliation:

1. Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China

2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University, Jiangsu, Suzhou 215006, China

角 色:通讯作者

Role:Corresponding author

邮 箱:20174008029@stu.suda.edu.cn

作者简介:E-mail: 20174008029@stu.suda.edu.cn

沈为民

机 构:

1. 苏州大学 光电科学与工程学院 教育部现代光学技术重点实验室,江苏 苏州 215006

2. 苏州大学 光电科学与工程学院 江苏省先进光学制造技术重点实验室,江苏 苏州 215006

Affiliation:

1. Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China

2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University, Jiangsu, Suzhou 215006, China

html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F002.png
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F003.png
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F004.png
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F005.png
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F006.png
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F007.jpg
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F009.png
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F010.png
html/hwyhmbcn/180471/media/3baa5010-45e0-414b-bce9-318a8899db07-image009.png
html/hwyhmbcn/180471/media/3baa5010-45e0-414b-bce9-318a8899db07-image010.png
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F014.jpg
html/hwyhmbcn/180471/media/3baa5010-45e0-414b-bce9-318a8899db07-image012.png
html/hwyhmbcn/180471/alternativeImage/3baa5010-45e0-414b-bce9-318a8899db07-F016.jpg
html/hwyhmbcn/180471/media/3baa5010-45e0-414b-bce9-318a8899db07-image014.png
指标及性能VNIRSWIR
光谱范围/μm0.5-1.01.0-2.5
狭缝长度/mm7035×2
狭缝间隔/mm——7
谱面宽度/mm96×2
F数2.72.7
光栅槽密度/ lp·mm-117037.7
光栅衍射级次-1-1
R1 /mm82.7587.90
R2 /mm98.62106.11
R3 /mm207.64225.05
球心最大偏离/mm0.060.14
狭缝离轴量/mm52.746.6,53.6
尺寸/mmΦ111×207Φ114×225
RMS点列图直径/μm<6<16
Smile /μm<0.053<0.12
Keystone /μm<0.053<0.10
html/hwyhmbcn/180471/media/3baa5010-45e0-414b-bce9-318a8899db07-image015.png

图1 Offner分光装架狭缝上任一点成像光路图(a)入射光路,(b)出射光路,(c)系统轴向视图,(d)光栅主截面内投影,(e)垂直于光栅主截面的投影

Fig. 1 Light path of Offner configuration from any point on the slit

图1 Offner分光装架狭缝上任一点成像光路图(a)入射光路,(b)出射光路,(c)系统轴向视图,(d)光栅主截面内投影,(e)垂直于光栅主截面的投影

Fig. 1 Light path of Offner configuration from any point on the slit

图1 Offner分光装架狭缝上任一点成像光路图(a)入射光路,(b)出射光路,(c)系统轴向视图,(d)光栅主截面内投影,(e)垂直于光栅主截面的投影

Fig. 1 Light path of Offner configuration from any point on the slit

图1 Offner分光装架狭缝上任一点成像光路图(a)入射光路,(b)出射光路,(c)系统轴向视图,(d)光栅主截面内投影,(e)垂直于光栅主截面的投影

Fig. 1 Light path of Offner configuration from any point on the slit

图1 Offner分光装架狭缝上任一点成像光路图(a)入射光路,(b)出射光路,(c)系统轴向视图,(d)光栅主截面内投影,(e)垂直于光栅主截面的投影

Fig. 1 Light path of Offner configuration from any point on the slit

图2 Offner分光装架像散随狭缝半长度变化曲线

Fig. 2 Astigmatism of the Offner spectrometer varied with the slit length

图3 Wynne-Offner分光装架任意物点成像光路图(a)入射光路,(b)出射光路

Fig. 3 Light path of Wynne-Offner configuration from any point on the slit

图3 Wynne-Offner分光装架任意物点成像光路图(a)入射光路,(b)出射光路

Fig. 3 Light path of Wynne-Offner configuration from any point on the slit

图4 分光装架物面消像散范围(a)Wynne-Offner分光装架,(b)Offner分光装架

Fig.4 Anastigmatic area of the spectrometer (a) Wynne-Offner type, (b) Offner type

图4 分光装架物面消像散范围(a)Wynne-Offner分光装架,(b)Offner分光装架

Fig.4 Anastigmatic area of the spectrometer (a) Wynne-Offner type, (b) Offner type

图5 两种分光装架狭缝长度方向像散

Fig. 5 Astigmatism of two spectrometers along the slit

图6 Wynne-Offner光谱仪消像散时xk1'k2'关系(狭缝离轴量为y=0.4R2

Fig. 6 Relationships between x, k1' and k2' when the Wynne-Offner spectrometer is anastigmatic

图7 Wynne-Offner光谱仪光学系统设计流程图

Fig. 7 Steps for designing the Wynne-Offner spectrometer

图8 VNIR和SWIR光谱仪(a)VNIR光谱仪光路图,(b)VNIR光谱仪轴向视图,(c)SWIR光谱仪光路图,(d)SWIR光谱仪轴向视图

Fig. 8 VNIR and SWIR spectrometers (a) VNIR spectrometer, (b) Axial view of the VNIR spectrometer, (c) SWIR spectrometer, (d) Axial view of the SWIR spectrometer

表1 VNIR和SWIR光谱仪指标及性能参数

Table1 Specifications and parameters of the VNIR and SWIR spectrometers

图9 光谱仪SFFD(a)Offner光谱仪剩余波像差SFFD,(b)Offner光谱仪剩余像散SFFD,(c)Wynne-Offner光谱仪剩余波像差SFFD,(d)Wynne-Offner光谱仪剩余像散SFFD

Fig. 9 SFFD(Spectral Full-Field Display) of spectrometers (a) RMS wavefront error of Offner spectrometer, (b) Astigmatism of Offner spectrometer, (c) RMS wavefront error of Wynne-Offner spectrometer, (d) Astigmatism of Wynne-Offner spectrometer

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • References

    • 1

      Offner A. Unit power imaging catoptric anastigmat: US, 3748015[P]. 1973.

    • 2

      Wynne C G. Optical imaging systems: US, 4796984[P]. 1989.

    • 3

      Chrisp M P. Convex diffraction grating imaging spectrometer: US, 5880834[P]. 1999.

    • 4

      Mertz L. Concentric spectrographs [J]. Applied Optics, 1977, 16(12):3122.

    • 5

      Kwo D, Lawrence G, Chrisp M. Design of a grating spectrometer from a 1:1 Offner mirror system [J]. Proceedings of SPIE, 1987, 818:275-281.

    • 6

      Prieto-Blanco X, Montero-Orille C, Couce B, et al. Analytical design of an Offner imaging spectrometer [J]. Optics Express, 2006, 14(20):9156-68.

    • 7

      Lobb D R. Theory of concentric designs for grating spectrometers [J]. Applied Optics, 1994, 33(13):2648.

    • 8

      Dan R L. Design of a spectrometer system for measurements on earth atmosphere from geostationary orbit [J]. Proceedings of SPIE, 2004,5249:191-202.

    • 9

      Prieto-Blanco X, Fuente R D L. Compact Offner–Wynne imaging spectrometers [J]. Optics Communications, 2014, 328(10):143-150.

    • 10

      Reimers J, Schiesser E M, Thompson K P, et al. Comparison of freeform imaging spectrometer design forms using spectral full-field displays [C]// OSA Technical Digest: Freeform Optics. 2015:FM3B.3.

    • 11

      Wei L, Feng L, Zhou J, et al. Optical design of Offner-Chrisp imaging spectrometer with freeform surfaces [C]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2016:100211P.

    • 12

      Risse S, Krutz D. Design of an imaging spectrometer for earth observation using freeform mirrors [C]// ISCO:International Conference on Space Optics, 2016:161.

    • 13

      Marchi A Z, Borguet B, Marchi A Z, et al. Freeform grating spectrometers for hyperspectral space applications: status of ESA programs [C]// OSA Technical Digest: Freeform Optics. 2017:JTh2B.5.

    • 14

      Reimers J, Bauer A, Thompson K P, et al. Freeform spectrometer enabling increased compactness[J]. Light Science & Applications, 2017, 6(7):e17026.

    • 15

      Cheng D, Yang T, Wang Y. Freeform imaging spectrometer design using a point-by-point design method [J]. Applied Optics, 2018, 57(16):4718.

    • 16

      Whyte C, Leigh R J, Lobb D, et al. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy[J]. Atmospheric Measurement Techniques, 2009, 2(2):789-800.

    • 17

      Zhang L F, Xu C R, Gao jun, et al. Recent advances in Chinese Spaceborne Hyperspectral Missions [C]// IEEE-IGARSSISIS TC Presentations-International Spaceborne Imaging Spectroscopy Missions: Updates and News II, 2015.

    • 18

      Coppo P, Taiti A, Pettinato L, et al. Fluorescence imaging spectrometer (FLORIS) for ESA FLEX mission [J]. Remote Sensing, 2017, 9(7):649.

    • 19

      Parks R E, Kuhn W P. Optical alignment using the Point Source Microscope [C]// International Society for Optics and Photonics, 2005:58770B-58770B-15.

    • 20

      Reimers J, Thompson K, Whiteaker K L, et al. Spectral full-field displays for spectrometers[C]// International Society for Optics and Photonics, 2014:92930O-92930O-5.