一种边界引导的多尺度高分辨率遥感图像分割方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(编号:40901198);空间数据挖掘与信息共享教育部重点实验室(福州大学)开放基金(编号:200805);极地测绘科学国家测绘局重点实验室开放基金(编号:200810)


Edge-Guided Segmentation Method for Multi-Scale High Resolution Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高分辨率遥感图像分割过程中区域合并复杂性问题,提出了一种基于边界引导的多尺度遥感图像分割算法。一方面应用SUSAN算子提取高分辨率遥感图像中地物的边界用于限制区域增长过程;另一方面进行两阶段增长,首先应用基于图的分割算法进行基于像素的区域生长,然后进行考虑对象特征信息的区域合并。对宜昌城区某处融合后的QuickBird彩色图像进行了实验,并分别进行了与无边界引导分割以及eCognition平台下图像分割效果的对比,结果表明,该方法可以有效抑制传统图像分割算法在低对比度区的区域融合问题,突破了分割尺度参数不能在全图取得合理分割的局限性。

    Abstract:

    In order to overcome the complexity of region merging in the segmentationimage of high resolution remote sensing image , an edge-guided segmentation method for multi-scale and high resolution remote sensing image was proposed. First,SUSAN operator was used to extract feature edges from the original test image. Then, an graph-based segmentation algorithm was used in the first-stage image segmentation and the following region merging stage, and extracted edges were efficiently used to guide merging process. To validate the proposed method, two experiments were performed on QuickBird image. The results were compared with segmentation results of eCognition and method without edge-guiding. The results show that this proposed method can efficiently depress the region merging in low-contrast areas for the traditional image segmentation algorithms, and make it possible to choose a reasonable segmentation scale in the whole image.

    参考文献
    相似文献
    引证文献
引用本文

谭玉敏,槐建柱,唐中实.一种边界引导的多尺度高分辨率遥感图像分割方法[J].红外与毫米波学报,2010,29(4):312~315]. TAN Yu-Min, HUAI Jian-Zhu, TANG Zhong-Shi. Edge-Guided Segmentation Method for Multi-Scale High Resolution Remote Sensing Image[J]. J. Infrared Millim. Waves,2010,29(4):312~315.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-05-12
  • 最后修改日期:2010-01-26
  • 录用日期:2009-07-20
  • 在线发布日期: 2010-08-25
  • 出版日期:
文章二维码