面向复杂森林场景的逐点注意力增强核点卷积树木点云分类方法
DOI:
CSTR:
作者:
作者单位:

1.复旦大学 未来信息创新学院;2.德国亥姆霍兹地球科学中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61991421)


Pointwise attention-enhanced KPConv for tree point cloud classification in complex forest scenarios
Author:
Affiliation:

1.College of Future Information Technology,Fudan University;2.GFZ Helmholtz Centre for Geosciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    树种分类作为森林资源管理与生态监测中的核心任务之一,对生物多样性保护和碳循环研究至关重要。与光学或者合成孔径雷达(Synthetic Aperture Radar,SAR)数据相比,激光雷达(Light Detection and Ranging,LiDAR)生成的三维点云数据能够更准确地描述树木的几何结构,如树干拓扑结构和叶簇分布,因此在树种分类中得到广泛应用。然而,现有分类方法在真实复杂森林环境中的泛化能力仍面临严峻挑战。这主要源于场景复杂性、数据分布偏移以及类别不平衡等因素的共同制约。为应对这些挑战,提出了一种新的树木点云分类网络KPCTree(kernel point convolution for Tree)。该模型以核点卷积(kernel point convolution,KPConv)网络为主干,融合逐点通道注意力机制,增强特征判别能力,并引入针对树木点云特性的专用数据增强策略。同时,采用动态类别加权损失函数以缓解数据不平衡问题。实验结果表明,KPCTree在多个数据集上均显著优于现有方法,展现出优异的泛化能力和普适性。

    Abstract:

    Tree species classification serves as a core task in forest resource management and ecological monitoring, playing a crucial role in biodiversity conservation and carbon cycle research. Compared to optical or Synthetic Aperture Radar (SAR) data, three-dimensional (3D) point clouds generated by Light Detection and Ranging (LiDAR) can more accurately characterize the geometric structure of trees, such as trunk topology and leaf cluster distribution, leading to their widespread application in tree species classification. However, the generalization capability of existing classification methods in real-world complex forest environments remains a significant challenge, primarily due to the combined effects of scene complexity, data distribution shift, and class imbalance. To address these challenges, this paper proposes a novel tree point cloud classification network, KPCTree (Kernel Point Convolution for Tree). The model employs Kernel Point Convolution (KPConv) as its backbone, integrates a pointwise channel attention mechanism to enhance feature discrimination capability, and introduces specialized data augmentation strategies tailored for tree point cloud characteristics. Furthermore, a dynamic class weighted loss function is adopted to mitigate the data imbalance problem. Experimental results demonstrate that KPCTree significantly outperforms existing methods across multiple datasets, exhibiting excellent generalization and universality.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-06
  • 最后修改日期:2025-12-26
  • 录用日期:2026-01-08
  • 在线发布日期:
  • 出版日期:
文章二维码