锗基p-i-n结构阻挡杂质带长波红外探测器的温度影响机制
DOI:
CSTR:
作者:
作者单位:

1.中国科学院上海技术物理研究所;2.上海大学;3.中国科学院杭州高等研究院;4.华东师范大学精密光谱科学与技术国家重点实验室

作者简介:

通讯作者:

中图分类号:

O43

基金项目:

国家重点研发计划(2023YFA1608701),国家自然科学基金(62274168, 11933006和U2141240)和杭州创新团队项目(TD2020002)


Temperature-Dependent Mechanism of Ge-Based p-i-n Blocked Impurity Band Long-Wavelength Infrared Detectors
Author:
Affiliation:

1.Shanghai Institute of Technical Physics, Chinese Academy of Science;2.Shanghai University;3.Hangzhou Institute for Advanced Study,UCAS;4.State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China;5.Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Fund Project:

The National Basic Research Program of China (973 Program),The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深低温工作的BIB(阻挡杂质带)探测器在红外天文空间探测等领域具有重要应用价值,然而关于其温度依赖机制的研究仍较为有限。文章采用近表面处理技术,制备了一种基于高纯锗材料的平面p-i-n结构BIB长波红外探测器,在较高温度下表现出优异的电学与光电响应性能,将传统BIB结构探测器的工作温度提高了约10 K。在3.3?K温度下,器件反偏暗电流低至15pA;随着温度升高,器件在黑体条件下的探测率呈下降趋势,但在温度不高于15K时变化不明显,最高可达3.5×1012?cm.Hz1?2.W?1。通过引入包含光激发、热激发与碰撞电离过程的电流模型进行模拟,并与实验数据对比,发现温度升高导致耗尽区显著收缩,从而降低载流子收集效率,是性能下降的主要机制。该研究为低温红外BIB探测器的结构设计与性能优化提供了理论支撑与实验依据。

    Abstract:

    BIB (Blocked Impurity Band) detectors operating at deep cryogenic temperatures have significant application potential in fields such as infrared astronomy and space observation. However, studies on their temperature-dependent performance mechanisms remain relatively limited. In this work, a planar p-i-n long-wavelength infrared BIB detector based on high-purity germanium was fabricated using a near-surface treatment technique. The device exhibits excellent electrical and photoresponse performance at relatively elevated temperatures, achieving an increase of approximately 10?K in operating temperature compared to conventional BIB detectors. At 3.3?K, the reverse-bias dark current is as low as 15?pA. With increasing temperature, the blackbody detectivity shows a decreasing trend, but remains nearly constant below 15?K, reaching up to 3.5×1012?cm.Hz1?2.W?1. A current model incorporating photoexcitation, thermal excitation, and impact ionization processes was introduced to simulate the device behavior. The simulation results agree well with the experimental data and reveal that the primary degradation mechanism is the significant shrinkage of the depletion region at elevated temperatures, which reduces carrier collection efficiency. This study provides both theoretical support and experimental evidence for the structural design and performance optimization of BIB detectors for low-temperature infrared applications.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-24
  • 最后修改日期:2025-06-25
  • 录用日期:2025-07-07
  • 在线发布日期:
  • 出版日期:
文章二维码