基于局部极值度量的短波红外偏振空中无人机目标检测
DOI:
CSTR:
作者:
作者单位:

1.中国科学院上海技术物理研究所;2.光电对抗测试评估技术重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:


Shortwave Infrared Polarization-based Aerial Small-UAV Target Detection via a Scale-Adaptive Local Extreme Measure
Author:
Affiliation:

1.Shanghai Institute of Technical Physics of the Chinese Academy of Sciences;2.Key Laboratory of Electro-Optical Countermeasures Test and Evaluation Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机检测在民用及军事领域均具有重要价值,然而传统红外探测系统易受背景杂波的干扰。红外偏振成像技术通过将偏振数据与红外成像相结合,为解决该问题提供了新途径。但偏振图像与红外图像的差异性为目标提取引入新的问题,因此本研究引入了一种基于尺度自适应局部极值度量(ALEM)的新型检测算法。该算法引入改进SUSAN算子快速提取感兴趣区域,估计该区域内潜在目标的特征尺度,并针对偏振图像特性提出ALEM算法,通过分析像素邻域特征实现对比度测量。基于真实场景偏振图像数据集的实验结果表明:该算法的信杂比增益相较于基准方法提高了2.7倍,背景抑制因子提高了8.6倍,且能以20 fps运行,它具有优异的检测性能、鲁棒性和实时检测的能力。

    Abstract:

    Unmanned aerial vehicle (UAV) detection holds significant value in both civilian and military domains, however, conventional infrared detection systems remain vulnerable to background clutter interference. Infrared polarization imaging technology offers a novel solution by integrating polarization data with infrared imaging. However, the differences between polarization and infrared images introduces new problems to target extraction. Therefore, we propose a new detection algorithm based on scale-adaptive local extreme measure (ALEM). The algorithm introduces an enhanced SUSAN operator to quickly extract regions of interest (ROIs) while estimating potential target scales within these regions. Then present the ALEM algorithm, which is specifically designed to exploit the unique characteristics of polarization images. The algorithm effectively measures contrast by analyzing pixel neighborhood features within polarization images. Experimental results based on real-world polarization image dataset demonstrate that: the signal-to-noise ratio gain of the algorithm is increased by 2.7 times, the background suppression factor is increased by 8.6 times, and it can run at 20 fps. It exhibits excellent detection performance, robustness, and the capability for real-time detection.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-02
  • 最后修改日期:2025-06-16
  • 录用日期:2025-06-24
  • 在线发布日期:
  • 出版日期:
文章二维码