基于扫描成像的光电器件高分辨缺陷检测技术研究
DOI:
CSTR:
作者:
作者单位:

1.南京邮电大学电子与光学工程学院;2.柔性电子全国重点实验室,信息材料与纳米技术研究院;3.上海市光学薄膜与光谱调控重点实验室,中国科学院上海技术物理研究所;4.复旦大学光科学与工程系

作者简介:

通讯作者:

中图分类号:

TN29

基金项目:

国家自然科学基金(62275256)、东方英才计划青年项目、南京邮电大学自然科学基金(NY224106)、上海市光学薄膜与光谱调控重点实验室资助


High-Resolution Defect Detection in Optoelectronic Device via Scanning Imaging Technique
Author:
Affiliation:

1.College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications;2.State Key Laboratory of Flexible Electronics &3.Institute of Advanced Materials, Nanjing University of Posts and Telecommunications;4.Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences;5.Shanghai Key Laboratory of Optical Coatings and Spectral Modulation,Shanghai Institute of Technical Physics,Chinese Academy of Sciences;6.Department of Optical Science and Engineering,Fudan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光电流扫描成像技术是太阳能电池及光电探测器研究的重要技术支撑,然而振镜驱动光束扫描方式存在扫描范围受限和图像畸变问题。为克服上述弊端,面向大面积光电器件光电响应一致性的检测需求,基于光学组件扫描方式,研制了一套大成像范围、高空间分辨、高稳定性、低成本的光电流扫描成像自动化测试系统,高细分模式可实现亚微米几何定位(细分数6400,扫描步长0.625 ?m),兼顾了大范围和高分辨率的样品扫描测试需求,且整体结构简单,极大降低了扫描成像系统的成本。使用表面覆盖有“南”字白纸和光栅条掩模板的硅光电池样品,证明扫描范围大于10×10 mm2,空间分辨率可达0.6 ?m。对Cu2ZnSnS4和Cu2ZnSn(S, Se)4太阳能电池的表面光电流图像进行了表征,证明Cu2ZnSnS4电池存在较多缺陷,而Cu2ZnSn(S, Se)4电池表面光电响应均匀,缺陷较少,这些结果有助于改进电池的制备工艺。

    Abstract:

    Photocurrent scanning imaging (mapping) technology is a key technique in the research of solar cells and photodetectors. However, traditional galvanometer-driven beam scanning methods are limited by a restricted scanning range and image distortion. To address these shortcomings and meet the need for testing the photocurrent uniformity of large-area optoelectronic devices, an automated photocurrent mapping testing system has been developed based on optical component scanning. This system offers a large imaging range, high spatial resolution, high stability, and low cost. With its high-precision mode, it can achieve sub-micron geometric positioning (subdivision number 6400, scanning step size 0.625 μm), fulfilling both large-area scanning requirements and providing high-resolution testing. Moreover, its simple structure greatly reduces the overall cost of the mapping system. Using a silicon solar cell sample with surface covered by a “南” (south) character paper or a encoder strip mask, it was demonstrated that the scanning range exceeds 10×10 mm2, with a spatial resolution of 0.6 μm. The system was also used to characterize the surface photocurrent images of Cu?ZnSnS? and Cu?ZnSn(S,Se)? solar cells. The results show that the Cu?ZnSnS? cell contains more defects, while the Cu?ZnSn(S,Se)? cell exhibits a more uniform surface photocurrent response with fewer defects. These findings contribute to the optimization of solar cell fabrication processes.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-03
  • 最后修改日期:2025-03-17
  • 录用日期:2025-03-19
  • 在线发布日期:
  • 出版日期:
文章二维码