基于注意力机制的陆地生态系统碳监测卫星大气层次识别与应用
DOI:
CSTR:
作者:
作者单位:

1.天津师范大学 京津冀生态文明发展研究院;2.自然资源部 国土卫星遥感应用中心;3.哈尔滨工业大学 卫星技术研究所;4.北京师范大学 地理科学学部

作者简介:

通讯作者:

中图分类号:

P407.5

基金项目:

国家自然科学基金项目(42301501); 自然资源高层次科技创新人才基金(B02202)


Atmospheric layer identification and application of Terrestrial Ecosystem Carbon Inventory Satellite based on attention mechanism
Author:
Affiliation:

1.Academy of Eco-civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University;2.Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of China;3.Research Center of Satellite Technology, Harbin Institute of Technology;4.Faculty of Geographical Science,Beijing Normal University

Fund Project:

the National Natural Science Foundation of China (42301501); High-Level Science and Technology Innovation Talent Fund for Natural Resources(B02202)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    陆地生态系统碳监测卫星(Terrestrial Ecosystem Carbon Inventory Satellite,TECIS/CM-1)通过多波束激光雷达、多光谱相机等多种主被动传感器协同观测,实现了大气云-气溶胶高分辨率综合立体监测。近年来,传统算法在低信噪比、近地表和多层结构混合等复杂环境下存在垂直层次检索精度和鲁棒性差的问题。针对于此,本稿件拟结合TECIS卫星多波束激光雷达数据特点和深度学习注意力机制,提出一种适用于新型多波束激光雷达的大气层次识别和应用的通用框架TECIS-CASNet。为验证该框架的可靠性,研究团队通过开展多次地基同步观测实验,对其识别精度进行了系统验证。最后,以中国京津冀地区典型沙尘长距离传输过程为研究对象,开展了示范性应用研究,充分展示了该框架的实际应用价值。结果表明:TECIS-CASNet框架对云-气溶胶识别精度较好,准确率达98.41%,在低信噪比、近地表和多层结构混合等复杂环境下能够减少误识别及漏检情况;气溶胶光学厚度反演绝对精度达到0.01、整体精度达到98%。本稿件围绕TECIS-CASNet框架的相关结论,对激光雷达卫星大气探测数据处理、环境监测应用等方面具有重要意义。

    Abstract:

    The Terrestrial Ecosystem Carbon Inventory Satellite (TECIS/CM-1) utilizes a combination of multi-beam lidar, multi-spectral cameras, and other passive and active sensors for synergistic observations, enabling high-resolution, comprehensive, and three-dimensional atmospheric monitoring of clouds and aerosols. In recent years, traditional algorithms have faced challenges in terms of vertical layer retrieval accuracy and robustness in complex environments with low signal-to-noise ratios, near-surface observations, and mixed multi-layer structures. To address these issues, this paper proposes TECIS-CASNet, a generalized framework for atmospheric layer recognition and application, designed for the novel multi-beam lidar on the TECIS satellite, leveraging the characteristics of the lidar data and deep learning attention mechanisms. To validate the reliability of this framework, the research team conducted multiple ground-based synchronous observation experiments to systematically evaluate its recognition accuracy. Finally, as a demonstrative application, the study focuses on a typical long-distance dust transport event in the Beijing-Tianjin-Hebei region of China, showcasing the practical application value of the framework. The results indicate that the TECIS-CASNet framework achieves high cloud-aerosol recognition accuracy, reaching 98.41%, and is capable of reducing misidentification and missed detection in complex environments, including low signal-to-noise ratios, near-surface layers, and multi-layer mixed structures. The absolute accuracy of aerosol optical depth retrieval is 0.01, with an overall accuracy of 98%. This paper, centered around the TECIS-CASNet framework, provides significant insights for lidar satellite atmospheric remote sensing data processing and environmental monitoring applications.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-22
  • 最后修改日期:2025-02-20
  • 录用日期:2025-02-25
  • 在线发布日期:
  • 出版日期:
文章二维码