基于PSO-GA-SVM融合算法及荧光激光雷达遥测技术的生物气溶胶浓度预测
DOI:
CSTR:
作者:
作者单位:

北方民族大学电气信息工程学院

作者简介:

通讯作者:

中图分类号:

P4

基金项目:

国家自然科学基金(42465007, 42105140, 42265009)、宁夏自然科学优秀青年基金(2022AAC05032)


Prediction of bioaerosol concentration based on PSO-GA-SVM fusion algorithm and fluorescence lidar
Author:
Affiliation:

North Minzu University,School of Electrical and Information Engineering

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    生物气溶胶粒子在空气中传播较广,高浓度的生物气溶胶对人体健康有着极大的危害。为实现大气生物气溶胶浓度的预警预测,本文以荧光激光雷达为探测工具,在获取生物气溶胶浓度廓线的基础上,结合大气环境相关参数,利用粒子群(PSO)和遗传算法(GA)优化支持向量机(SVM),建立生物气溶胶浓度廓线预测模型,通过采用温度、湿度、PM2.5、PM10、CO2、SO2、NO2、O3、风速等相关参数数据作为输入量,生物气溶胶浓度廓线数据作为输出量进行模型训练,确定预测模型参数配置,重新引入新的大气环境参数,利用训练好的模型预测生物气溶胶浓度廓线,并与荧光激光雷达探测的生物气溶胶浓度廓线进行比较,同时分析不同算法优化模型预测的生物气溶胶浓度及其相对误差。

    Abstract:

    Bioaerosol particles are widely spread in the air, and high concentrations of bioaerosols are extremely hazardous to human health. In order to realize the early warning prediction of atmospheric bioaerosol concentration, this paper takes fluorescence lidar as the detection tool, and on the basis of obtaining the bioaerosol concentration contour, combines the relevant parameters of the atmospheric environment, optimizes the support vector machine (SVM) by using the particle swarm (PSO) and the genetic algorithm (GA) and establishes a prediction model for the bioaerosol concentration contour, by adopting the temperature, humidity, PM2.5, PM10, CO2, SO2, NO2, O3, wind speed and other related parameters as inputs and bioaerosol concentration contour data as outputs for training, determining the parameter configuration of the prediction model, and reintroducing new atmospheric parameters, predicting the bioaerosol concentration contours by using the trained model and comparing it with that detected by fluorescence lidar, and analyzing the results of the bioaerosol concentration contours predicted by the optimized model with different algorithms. The bioaerosol concentrations predicted by the optimized model and their relative errors are also analyzed.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-09
  • 最后修改日期:2025-02-26
  • 录用日期:2025-02-28
  • 在线发布日期:
  • 出版日期:
文章二维码