改进球形体素局部形状描述符的跨源点云配准
DOI:
CSTR:
作者:
作者单位:

1.郑州大学;2.郑州大学地球科学与技术学院;3.华中师范大学城市与环境科学学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(42241759); 国家自然科学基金青年基金(42001405); 河南省自然科学基金(242300420212); 中国博士后科学基金(2024M752938)


Cross-source point cloud registration using an improved spherical voxel-based local shape descriptor
Author:
Affiliation:

1.Zhengzhou University;2.Central China Normal University

Fund Project:

The National Natural Science Foundation of China (42241759); National Natural Science Foundation of China Youth Fund (42001405); The Natural Science Foundation of Henan Province(CN) (242300420212); The China Postdoctoral Science Foundation(2024M752938)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对跨源点云配准中由于点云数据质量差异带来的诸多挑战,提出了一种改进球形体素局部形状描述符的跨源点云配准方法。该方法的核心是设计了一个局部形状描述符,SVCD(Spherical Voxel Center Descriptor,球形体素中心描述符)。通过使用双权重来计算局部参考框架(Local Reference Frame,LRF),并对局部曲面进行球形体素分割,有效解决了跨源点云密度与分布差异的影响。此外,通过利用局部体素中心到关键点的距离进行特征编码,增强了描述符的描述性和鲁棒性。最后采用最近邻相似比生成正确对应关系,并通过奇异值分解生成最终的刚性变换矩阵,实现高精度跨源配准。通过在3DCSR和真实数据集上分别进行实验,实验结果表明SVCD描述符具有高描述性和鲁棒性,并且显著提升了跨源配准精度,在跨源配准中的配准误差低至0.0048;在两个数据集上的召回率分别达到82.83%和83.45%,提高了10.24和11.16个百分点;此外,在应对高斯噪声的影响时,SVCD的平均召回率为76.54%,远高于其他描述符,证明了SVCD的鲁棒性。

    Abstract:

    To address the challenges caused by variations in point cloud quality during cross-source registration, we introduce an improved local shape descriptor, termed the Spherical Voxel Center Descriptor (SVCD). This descriptor forms the foundation of a robust method designed to mitigate the effects of density and distribution disparities in cross-source point clouds. The core innovation lies in the design of a dual-weighted Local Reference Frame (LRF) computation combined with spherical voxel segmentation of local surfaces, effectively mitigating the impact of density and distribution discrepancies in cross-source data. SVCD enhances feature descriptiveness and robustness by encoding the distances from voxel centers to keypoints. Accurate correspondences are established using nearest neighbor similarity ratios, and the final rigid transformation matrix is derived via singular value decomposition. Extensive experiments on 3DCSR and real-world datasets demonstrate the superior performance of SVCD, achieving a registration error as low as 0.0048. Recall rates of 82.83% and 83.45% represent improvements of 10.24 and 11.16 percentage points, respectively, over existing methods. Additionally, SVCD exhibits exceptional robustness to Gaussian noise, attaining an average recall of 76.54%, significantly outperforming other descriptors. These results underscore the effectiveness and reliability of SVCD for cross-source point cloud registration.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-04
  • 最后修改日期:2025-02-22
  • 录用日期:2025-02-26
  • 在线发布日期:
  • 出版日期:
文章二维码