太赫兹光谱技术结合卷积神经网络鉴别三七产地的研究
CSTR:
作者:
作者单位:

1.上海理工大学 光电信息与计算机工程学院 太赫兹技术创新研究院,上海 200093;2.文山州检验检测认证院,云南 文山 663099

作者简介:

通讯作者:

中图分类号:

O43

基金项目:

云南省院士(专家)工作站项目(202505AF350094);上海市“科技创新行动计划”技术标准项目(24DZ2200900)


Research on the origin identification of Panax notoginseng using terahertz spectroscopy combined with convolutional neural networks
Author:
Affiliation:

1.Terahertz Technology Innovation Research Institute, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2.Wenshan Prefecture Inspection, Testing and Certification Institute, Wenshan 663099, China

Fund Project:

Supported by the Yunnan Province Academician (Expert) Workstation Project (202505AF350094);Shanghai "Science and Technology Innovation Action Plan" Technical Standard Project (24DZ2200900).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    三七作为珍贵中草药,其药效品质与皂苷含量密切相关,而皂苷含量呈现显著产地差异性。为准确鉴别三七产地并保障药材质量,该研究提出结合太赫兹精密光谱技术与卷积神经网络算法的新方法。实验收集中国云南省红河自治州、昆明市、曲靖市和文山自治州四个产区的40份三七样本,分别采用太赫兹光谱与高效液相色谱技术进行检测分析。基于获取的光谱和色谱数据,研究构建并训练了卷积神经网络模型以实现产地分类。实验结果显示,太赫兹光谱技术结合卷积神经网络模型的分类准确率达到92.5%,较高效液相色谱数据结合同类型模型的分类准确率(82.5%)提升显著。该发现证实太赫兹光谱技术在中草药成分解析与产地溯源方面具有应用潜力,为中药材的快速无损检测与精准识别提供了新型科学手段。

    Abstract:

    As a valuable Chinese herbal medicine, Panax notoginseng exhibits therapeutic efficacy and quality closely associated with its saponin content, which demonstrates significant geographical variations. To accurately authenticate the geographical origin and ensure medicinal quality, a novel method integrating terahertz precision spectroscopy with a convolutional neural network (CNN) algorithm was proposed. 40 Panax notoginseng samples from 4 regions in Yunnan Province, China—Honghe Autonomous Prefecture, Kunming, Qujing, and Wenshan Autonomous Prefecture—were analyzed using terahertz spectroscopy and high-performance liquid chromatography (HPLC). A CNN model was constructed and trained based on the acquired spectral and chromatographic data to classify the geographical origins. Experimental results revealed that the terahertz spectroscopy combined with the CNN model achieved a classification accuracy of 92.5%, significantly outperforming the 82.5% accuracy attained by the HPLC-CNN model. This finding highlights the potential of terahertz spectroscopy in component analysis and geographical traceability of herbal medicines, providing a novel scientific approach for rapid, non-destructive, and precise identification of Chinese medicinal materials.

    参考文献
    相似文献
    引证文献
引用本文

王俊涛,王胜峰,李秋叶,彭滟.太赫兹光谱技术结合卷积神经网络鉴别三七产地的研究[J].红外与毫米波学报,2025,44(5):732~742]. WANG Jun-Tao, WANG Sheng-Feng, LI Qiu-Ye, PENG Yan. Research on the origin identification of Panax notoginseng using terahertz spectroscopy combined with convolutional neural networks[J]. J. Infrared Millim. Waves,2025,44(5):732~742.]

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-30
  • 最后修改日期:2025-07-24
  • 录用日期:2025-02-11
  • 在线发布日期: 2025-07-17
  • 出版日期:
文章二维码