太赫兹光谱技术结合卷积神经网络鉴别三七产地的研究
CSTR:
作者:
作者单位:

上海理工大学 光电信息科学与工程学院,太赫兹技术创新研究院,上海 200093

作者简介:

通讯作者:

中图分类号:

O43

基金项目:

国家自然科学基金(62435010)


Research on the Identification of Panax notoginseng Origin Using Terahertz Spectroscopy Combined with Convolutional Neural Networks
Author:
Affiliation:

Terahertz Innovation Institute, School of Optoelectronic Information Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

National Natural Science Foundation of China (62435010)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    三七是一种珍贵的中草药,其药效和品质受到皂苷含量的影响,而皂苷含量又与产地密切相关。为了准确鉴别三七的产地,确保药材质量,本研究提出了一种结合太赫兹精密光谱技术和卷积神经网络算法的新方法。我们收集了来自中国云南省红河自治州、昆明市、曲靖市和文山自治州四个产地的40个三七样本,利用太赫兹光谱和高效液相色谱技术进行分析。基于收集的光谱和色谱数据,构建并训练了一个卷积神经网络模型,旨在对三七样本进行产地分类。研究结果表明,太赫兹光谱技术结合卷积神经网络模型的分类准确率达到了92.5%,显著优于高效液相色谱数据结合卷积神经网络模型的分类结果(82.5%)。这一发现证明了太赫兹光谱技术在中草药成分分析和产地识别中的潜力,为中草药的快速、无损和准确识别提供了一种新的科学工具。

    Abstract:

    Panax notoginseng is a precious Chinese herbal medicine, its efficacy and quality are affected by the saponin content, which is closely related to the origin. In order to accurately identify the origin of Panax notoginseng and ensure its quality, a new method combining terahertz precision spectroscopy and convolutional neural network algorithm was proposed in this study. We collected 40 samples of Panax notoginseng from four origins of Honghe Autonomous Prefecture, Kunming City, Qujing City and Wenshan Autonomous Prefecture in Yunnan Province, China, and analyzed them by terahertz spectroscopy and high performance liquid chromatography. Based on the collected spectral and chromatographic data, a convolutional neural network model was constructed and trained for the origin classification of Panax notoginseng samples. The results show that the classification accuracy of terahertz spectroscopy combined with convolutional neural network model reaches 92.5%, which is significantly better than that of high performance liquid chromatography combined with convolutional neural network model (82.5%). This discovery demonstrates the potential of terahertz spectroscopy in the composition analysis and origin identification of Chinese herbal medicines, providing a new scientific tool for rapid, non-destructive and accurate identification of Chinese herbal medicines.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-30
  • 最后修改日期:2025-02-10
  • 录用日期:2025-02-11
  • 在线发布日期:
  • 出版日期:
文章二维码