硅基能谷光子晶体马赫曾德热光调制器
CSTR:
作者:
作者单位:

1.太原理工大学 物理与光电工程学院,太原 030024;2.皇家墨尔本理工大学 材料与纳米制造中心,维多利亚 3000;3.山西大学 量子光学与光量子器件国家重点实验室,太原030006

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金委联合基金(U23A20375)、山西省自然科学基金面上项目(202403021211011)、量子光学与光量子器件国家重点实验室开放课题(KF202402)、山西省重点研发计划项目(202302150101001)、基础科研条件与重大科学仪器设备研发(2023YFF0715700)、山西省回国留学人员科研教研资助项目(2024-032)、山西省留学回国人员科技活动择优资助项目(20240006)


Silicon valley photonic crystal Mach-Zehnder thermo -optic modulator
Author:
Affiliation:

1.College of physics and Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2.Centre for Atomaterials and Nanomanufacturing, School of Science, RMIT University, Melbourne, Victoria 3000, Australia;3.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, 030006,China

Fund Project:

Supported by The Basic scientific research conditions and major scientific instrument and equipment development of Anhui Science and Technology Department ( U23A20375 ) , The Natural Science Foundation of Shanxi ( 2024030212110110 ) , The Project supported by the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices ( KF202402 ) , The Key Research project of Shanxi Province ( 202302150101001 ) , The Basic scientific research conditions and major scientific instrument and equipment development of Anhui Science and Technology Department ( 2023YFF0715700 ) ,The Research project Supported by Shanxi Scholarship Council of China ( 2024-032 ) , The Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province ( 20240006 )

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    热调制器是光通信系统的关键组件,其性能直接影响系统效能。随着硅基光电子技术的发展,硅基热光调制器在光电芯片得到广泛应用。传统硅基调制器尺寸大、损耗高。近年来,研究者提出利用光子晶体的慢光效应缩小调制器尺寸,相关研究显示这些器件具有小尺寸和低驱动电压等优点。但基于光子晶体实现的热光调制器依然无法避免加工误差带来的缺陷对光传输的影响。能谷光子晶体光波导能够实现散射免疫的高效率单向光传输,为实现高性能光子学器件提供了新思路。本文设计了新型基于能谷光子晶体马赫曾德干涉仪(MZI)的硅基热光调制器,在MZI的其中一条波导上引入电压加热金属机制,通过热光效应调制折射率,实现对输出信号的精确调制,该热光调制器器件面积仅为9.26 μm × 7.99 μm,可实现0.91的高正向透射率、0.41 dB插入损耗和11.75 dB调制对比度,并可以使用互补金属氧化物半导体(CMOS)进行实验加工,因此具有广泛的应用前景。该调制原理可以广泛应用于设计不同的热光调制器件。

    Abstract:

    Thermo-optic modulators are key components of optical communication systems, and their performance directly affects system efficiency. With the development of silicon optothermonic technology, silicon thermo-optic modulators have been widely used in optothermonic chips. Conventional silicon optical modulators are large in size and have high losses. In recent years, researchers have proposed to use the slow light effect of photonic crystals to reduce the footprint of modulators. Related studies have shown that these devices have advantages, such as small size and low driving voltage. However, the optical transmittance of thermo-optic modulators based on photonic crystals is still affected by defects caused by fabrication errors. Valley photonic crystal optical waveguides can achieve scattering-immune high-efficiency unidirectional transmission, providing a new venue for realizing high-performance photonic devices. In this paper, a new silicon thermo-optic modulator based on a valley photonic crystal Mach-Zehnder interferometer (MZI) is designed. The electrical heating mechanism is introduced on one of the waveguides of the MZI. The thermo-optic effect modulates the refractive index to achieve precise phase modulation of the transmitted light. The thermo-optic modulator device has a small footprint of only 9.26 μm × 7.99 μm, which can achieve a high forward transmittance of 0.91, an insertion loss of 0.41 dB, and a modulation contrast of 11.75 dB. It can also be experimentally fabricated using complementary metal oxide semiconductor (CMOS) technology, so it will have broad application prospects. This modulation principle can be widely used in designing different thermo-optic modulation devices.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-11
  • 最后修改日期:2025-10-30
  • 录用日期:2025-02-27
  • 在线发布日期: 2025-11-27
  • 出版日期:
文章二维码