YOLO-Fastest-IR:面向红外热像仪的超轻量级热红外人脸检测网络
DOI:
作者:
作者单位:

南京大学 电子科学与工程学院

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

江苏省自然科学基金(BK20241224);中央高校基本科研业务费(2024300443)


YOLO-Fastest-IR: Ultra-lightweight thermal infrared face detection method for infrared thermal camera
Author:
Affiliation:

School of Electronic Science and Engineering,Nanjing University

Fund Project:

Natural Science Foundation of Jiangsu Province (BK20241224); Fundamental Research Funds for the Central Universities (2024300443)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文介绍了一种基于ARM CPU的高速鲁棒的双波段热成像测温相机,该测温仪由低分辨率长波红外探测器、数字温湿度的传感器和CMOS传感器组成。针对热红外图像中人脸与背景对比度大的现象,本文探索了一种平衡了人脸检测精度与速度的折衷方案,并提出了一个超型轻量级热红外人脸检测,将之命名为YOLO-Fastest-IR。基于YOLO-Fastest设计了四种不同尺度的热红外人脸检测器YOLO-Fastest-IR0至IR3。为了对4个超轻量级网络训练和测试,本文还设计了一套多用户低分辨率热人脸数据集(RGBT-MLTF),并对四个网络完成了训练。实验表明,轻量级卷积神经网络在热红外人脸检测任务中表现出色。该算法在定位精度和速度上均优于现有的人脸检测算法,且更适合部署在移动平台或嵌入式设备中。在红外图像(IR)中获取感兴趣区域后,根据热红外人脸检测结果对RGB相机进行引导,实现RGB人脸的精细定位。实验结果表明,YOLO-Fastest-IR在树莓派4B上的帧率高达92.9 FPS,在RGBT-MLTF测试集中人脸定位成功率达97.4%。最终实现了低成本、强鲁棒性和高实时性的测温系统集成,测温精度可达0.3℃。

    Abstract:

    This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU. It is composed of a low-resolution long-wavelength infrared detector, a digital temperature and humidity sensor, and a CMOS sensor. In view of the phenomenon of large contrast between face and background in thermal infrared image, this paper we search for a suitable accuracy-latency tradeoff for thermal face detection and propose a tiny-lightweight detector named YOLO-Fastest-IR. Four different scale YOLO-Fastest-IR0 to IR3 thermal infrared face detectors based on YOLO-Fastest are designed. To train and test four tiny-lightweight models, a multi-user low-resolution thermal face database (RGBT-MLTF) is collected, and the four networks are trained. Experiments reveal that the lightweight convolutional neural network can also perform well in the thermal infrared face detection task. And the algorithm is superior to the existing face detection algorithms in positioning accuracy and speed, which is more suitable for deployment in mobile platforms or embedded devices. After obtaining the region of interest in the infrared image (IR), the RGB camera is guided by the results of thermal infrared face detection, to realize the fine positioning of RGB face. The experimental results show that YOLO-Fastest-IR has a frame rate of 92.9 FPS on a Raspberry Pi 4B and can successfully locate 97.4% of the face in the RGBT-MLTF test set. The integration of infrared temperature measurement system with low cost, strong robustness and high real-time performance was ultimately achieved, the temperature measurement accuracy can reach 0.3 degrees Celsius.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-30
  • 最后修改日期:2024-12-15
  • 录用日期:2024-12-18
  • 在线发布日期:
  • 出版日期:
文章二维码