基于多层Transformer神经网络的InP HEMT毫米波建模
DOI:
作者:
作者单位:

1.南通大学;2.华东师范大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Millimeter-Wave Modeling based on Neural Network with multiple transformers of InP HEMT
Author:
Affiliation:

1.Nantong University;2.East China Normal University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文对基于Transformer神经网络模型的磷化铟高电子迁移率晶体管(InP HEMT)小信号建模进行了研究,利用Transformer模型对HEMT器件的交流S参数进行训练和验证。在所提出的模型中,八层Transformer编码器串联,每个Transformer的编码器层由多头注意层和前馈神经网络层组成。实验结果表明,在0.5~40 GHz频率范围内,HEMT器件测量和建模的S参数匹配良好,频率误差小于1%,平均误差在0.25%以内。与其他模型相比,可以达到良好的精度,验证了所提模型的有效性。

    Abstract:

    In this paper, the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor (InP HEMT) based on the Transformer neural network model is investigated. The AC S-parameters of the HEMT device are trained and validated using the Transformer model. In the proposed model, the eight layers transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer. The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz, with the errors versus frequency less than 1%, and the average error within 0.25%. Compared with other models, good accuracy can be achieved to verify the effectiveness of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2024-12-10
  • 录用日期:2024-12-23
  • 在线发布日期:
  • 出版日期:
文章二维码