多通道交互注意与轮廓增强的红外无人机检测
DOI:
作者:
作者单位:

1.山东理工大学;2.北京理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金;山东省泰山学者项目


Infrared UAV Detection Based on Multi-Channel Interactive Attention Mechanism and Edge Contour Enhancement
Author:
Affiliation:

1.Shandong University of Technology;2.Beijing Institute of Technology

Fund Project:

Natural Science Foundation of Shandong Province;Taishan Scholars Program of Shandong Province

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机因其小巧、轻便、灵活的特点,在农业、物流、救援、赈灾等方面有着广泛的应用。然而如果使用不当或管理不善,不仅会造成个人隐私泄露、财产损失,还可能对公共安全甚至军事安全构成威胁。因此,实时准确地对空域内的无人机进行检测与预警具有重要作用。对此,提出了一种用于红外无人机检测的多通道交互注意力和边缘轮廓增强的方法(MCIAECE)。首先,通过构建多通道交互注意力机制模块和边缘轮廓增强模块组成的多通道对红外图像的浅层和深层特征进行提取,经过注意力机制可以增强目标特征而边缘轮廓增强则可以获取更多细节信息。然后使用多级特征融合模块将所提取的各层特征进行融合增强,从而获得检测结果。实验结果表明,在三个数据集上用多通道交互注意力和边缘轮廓增强的方法都能够达到较好的效果。其中在NUDT-SIRST红外数据集上效果最佳,检测概率和交并比分别为98.83%和85.11%与基线网络相比提高了1.95%和6.88%,与其他方法相比,在目标的边缘轮廓还原方面效果显著。

    Abstract:

    UAVs have a wide range of applications in agriculture, logistics, rescue and disaster relief because of their compactness, lightness and flexibility. However, if they are used improperly or mismanaged, they may not only cause personal privacy leakage and property loss, but also pose a threat to public safety and even military security. Therefore, real-time and accurate detection and warning of UAVs in the airspace plays an important role. In this regard, a multi-channel interactive attention and edge contour enhancement (MCIAECE) method for infrared UAV detection is proposed. Firstly, the shallow and deep features of the infrared image are extracted by constructing a multi-channel consisting of a multi-channel interactive attention mechanism module and an edge contour enhancement module, after which the attention mechanism enhances the target features while the edge contour enhancement obtains more detailed information. Then the extracted features of each layer are fused and enhanced using the multilevel feature fusion module to obtain the detection results. The experimental results show that better results can be achieved with multi-channel interactive attention and edge contour enhancement on all three datasets. Among them, the best results are obtained on the NUDT-SIRST infrared dataset, with the detection probability and intersection and concurrency ratio of 98.83% and 85.11% respectively compared with the baseline network, and the effect is significant in the edge contour restoration of the target compared with other methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-10
  • 最后修改日期:2024-10-27
  • 录用日期:2024-11-13
  • 在线发布日期:
  • 出版日期:
文章二维码