稀疏性和自相似性先验引导的深度学习图像盲超分
DOI:
作者:
作者单位:

1.复旦大学 信息学院 电子工程系;2.紫光展锐(上海)科技有限公司 音视频技术资源部

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Sparsity and Self-Similarity Priors Guided Deep Learning for Blind Image Super-Resolution
Author:
Affiliation:

1.Fudan University;2.Media Technology Resources Department, UNISOC (Shanghai) Technologies Co., Ltd

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像盲超分旨在从未知退化的低分辨率图像中恢复出相应的高分辨率图像,已成为计算机视觉领域中的研究热点。由于该问题的病态本质,如何合理选择并利用图像先验成为解决该问题的关键,然而,现有的基于深度学习的图像盲超分算法仅利用神经网络端到端地学习低分辨率图像到高分辨率图像的映射,让网络隐式地学习图像的先验,导致算法仍产生模糊的超分结果。针对上述问题,提出一种稀疏性和自相似性先验引导的深度学习图像盲超分算法。首先,针对不同的低分辨率图像输入,利用动态线性核估计模块,有效估计出相应模糊核;然后,利用基于FISTA算法的深度展开反卷积滤波模块,显式地对信号的稀疏性先验进行建模,实现对退化图像的反卷积恢复;最后,利用双通道多尺度大感受野恢复模块,借助于图像自相似性先验进行超分恢复。在公开的Gaussian8和DIV2KRK数据集上的实验结果表明,与现有方法相比,所提出算法恢复出的图像不仅具有最高的复原指标,还具有更佳的视觉效果。

    Abstract:

    Blind image super-resolution (BISR) aims to restore corresponding high-resolution (HR) images from low-resolution (LR) images with unknown degradation, becoming a research hotspot in the field of computer vision. Due to the ill-posed nature of this problem, the rational selection and utilization of image priors have become key to solving it. However, existing deep learning-based BISR algorithms only employ neural networks to learn the mapping from LR to HR images in an end-to-end manner, only allowing the network to implicitly learn image priors, resulting in somewhat blurry super-resolution results. A deep learning-based BISR algorithm guided by sparsity and self-similarity priors is proposed to address the above issues. Initially, for various LR image inputs, a dynamic linear kernel estimation module is employed to effectively estimate the corresponding blur kernels; Subsequently, a deep unfolding deconvolution filtering module based on the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is utilized to explicitly model the sparsity prior of signal, achieving deconvolution restoration of the degraded images; Finally, a dual-path multi-scale large receptive field restoration module leverages the self-similarity prior of images for super-resolution recovery. Experimental results on the public Gaussian8 and DIV2KRK datasets demonstrate that, compared to existing methods, the proposed algorithm not only achieves the highest restoration metrics but also delivers superior visual quality in the recovered images.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-04
  • 最后修改日期:2024-10-01
  • 录用日期:2024-10-17
  • 在线发布日期:
  • 出版日期:
文章二维码