基于时序Sentinel-2影像和近红外潮滩指数的海岸带潮滩提取方法
DOI:
作者:
作者单位:

1.长沙理工大学;2.云南农业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目,湖南省自然科学基金项目


Tidal flats extraction in the coastal zone based on time-series Sentinel-2 imagery and near-infrared tidal flats indices
Author:
Affiliation:

1.Changsha University of Science and Technology;2.Yunnan Agricultural University

Fund Project:

The National Natural Science Foundation of China,Hunan Provincial Natural Science Foundation Fund Project

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用遥感瞬时影像提取海岸带潮滩时,受潮汐影响导致空间分布提取准确性低。本文以削弱潮汐影响为目的,提出一种联合时序Sentinel-2影像与潮滩指数的海岸带潮滩提取方法。首先,基于Sentinel-2时间序列影像,利用分位数合成法生成高、低潮影像,分析不同地类在高、低潮影像上的光谱反射率特征,构建一种可排除潮汐瞬时干扰的近红外波段潮滩提取指数;将影像光谱与潮滩提取指数输入到机器学习算法中,实现潮滩的快速、高效提取。此外,本文讨论了潮滩指数的可分离性及方法的普适性。结果表明:本文构建的潮滩提取指数对潮滩具有较好的可分离性,潮滩提取总体精度为93.02%,Kappa系数为0.86,提出的方法对含有近红外波段的遥感影像均具有良好的适用性。,本研究能够实现自动、快速地潮滩提取,为海岸带资源的可持续管理和保护提供数据支持。

    Abstract:

    When extracting coastal zone tidal flats using remote sensing transient images, the influence of tides greatly limits the accuracy of tidal flat spatial distribution extraction. In this paper, based on the Google Earth Engine (GEE) cloud platform, a coastal zone tidal flats extraction method by combining the time-series Sentinel-2 image and the tidal flats index is proposed. First, based on the Sentinel-2 time-series image data, we use the quantile synthesis method to generate high- and low-tide images, and then analyze the spectral reflectance characteristics of different land classes on the high- and low-tide images. A NIR-band tidal flat extraction index that excludes the interference of the tidal transient is constructed. Secondly, the image spectral information and the tidal flat extraction index are input into a machine learning algorithm to realize fast and efficient extraction of the tidal flat. Finally, the separability of the tidal flats index and the universality are investigated. The results show that the tidal flats extraction index constructed in this research had a good separability for tidal flats, the overall accuracy of tidal flats extraction was 93.02%, the Kappa coefficient was 0.86, and the proposed method has good applicability to remote sensing images containing near-infrared bands. This method can realize automatic and rapid tidal flat extraction, and provide data support for the sustainable management and protection of coastal zone resources.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-10
  • 最后修改日期:2024-09-09
  • 录用日期:2024-09-09
  • 在线发布日期:
  • 出版日期:
文章二维码