融合密集连接与多注意力机制的星载红外遥感图像超分辨率网络
CSTR:
作者:
作者单位:

1.复旦大学 信息科学与工程学院 电磁波信息科学教育部重点实验室,上海 200433;2.中国科学院上海技术物理研究所,上海 200083

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

国家自然科学基金(61991421)


Infrared remote sensing image super-resolution network by integration of dense connection and multi-attention mechanism
Author:
Affiliation:

1.Key Laboratory for Information Science of Electromagnetic Waves (MoE), School of Information Science and Technology, Fudan University, Shanghai 200433, China;2.Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Fund Project:

Supported by the National Natural Science Foundation of China (61991421)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    星载红外遥感图像在环境监测和军事侦察等领域具有重要应用价值。然而,由于器件工艺限制、大气扰动和传感器噪声等因素,这类图像面临分辨率不足和细节纹理模糊的问题,严重限制了后续分析和处理的准确性。为了克服这些困难,提出了一种新的超分辨率生成对抗网络模型(generative adversarial network,GAN),该模型将密集连接与Swin Transformer架构相融合,实现跨层特征传递和上下文信息的有效利用,同时增强了模型的全局特征提取能力。此外,将传统的跳跃连接改进为基于多尺度通道注意力机制(multi-scale channel attention,MSCA)的特征融合,使网络能够更加灵活地整合多尺度特征,提升了特征融合的质量和效率。随后,通过构建联合损失函数,以全面优化生成器的性能,进一步提升超分辨率图像质量。所提算法在不同数据集上进行对比测试均取得了较好效果,且超分后的图像在目标检测等下游任务中,也展现出更高的性能,验证了该算法在星载红外遥感图像超分辨率中的有效性和应用潜力。

    Abstract:

    Space-borne infrared remote sensing images have significant applications in environmental monitoring and military reconnaissance. Nonetheless, due to technological limitations, atmospheric disturbances, and sensor noise, these images suffer from insufficient resolution and blurred texture details, severely restricting the accuracy of subsequent analysis and processing. To address these issues, a new super-resolution generative adversarial network model is proposed. This model integrates dense connections with the Swin Transformer architecture to achieve effective cross-layer feature transmission and contextual information utilization while enhancing the model''s global feature extraction capabilities. Furthermore, the traditional residual connection is improved with multi-scale channel attention-based feature fusion, allowing the network to more flexibly integrate multi-scale features, thereby enhancing the quality and efficiency of feature fusion. A joint loss function is constructed to comprehensively optimize the performance of the generator. Comparative tests on different datasets demonstrate significant improvements with the proposed algorithm. Furthermore, the super-resolved images exhibit higher performance in downstream tasks such as object detection, confirming the effectiveness and application potential of the algorithm in space-borne infrared remote sensing image super-resolution.

    参考文献
    相似文献
    引证文献
引用本文

徐新昊,王俊,王峰,孙胜利.融合密集连接与多注意力机制的星载红外遥感图像超分辨率网络[J].红外与毫米波学报,2025,44(2):251~262]. XU Xin-hao, WANG Jun, WANG Feng, SUN Sheng-li. Infrared remote sensing image super-resolution network by integration of dense connection and multi-attention mechanism[J]. J. Infrared Millim. Waves,2025,44(2):251~262.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-23
  • 最后修改日期:2025-02-13
  • 录用日期:2024-11-13
  • 在线发布日期: 2025-02-08
  • 出版日期: 2025-04-25
文章二维码