偏振可调的太赫兹砷化镓光电导天线阵列研究
作者:
作者单位:

1.渭南师范学院 物理与电气工程学院, 陕西 渭南 714099;2.西安理工大学 陕西省超快光电技术与太赫兹科学重点实验室, 陕西 西安710048;3.陕西铁路工程职业技术学院, 陕西 渭南 714000

作者简介:

E-mail:swshi@mail.xaut.edu.cn

中图分类号:

O441.4

基金项目:

国家自然科学基金(62371391); 陕西省科技厅基金青年项目(2023-JC-QN-0676); 陕西省教育厅基金一般专项(21JK0632); 渭南市科学技术局基金重点研发计划项目(2022ZDYFJH-123)


The research on polarization-tunable terahertz GaAs photoconductive antenna array
Author:
Affiliation:

1.School of Physics and Electrical Engineering, Weinan Normal University, Weinan 714099, China;2.Key Laboratory of Ultrafast Optoelectronic and Terahertz Science, Xi’an University of Technology, Xi’an 710048, China;3.Shaanxi Railway Institute of Vocational Technology, Weinan 714000, China

Fund Project:

Supported by the National Natural Science Foundation of China (62371391), the Natural Science Foundation of Shaanxi Provincial Department of Science and Technology (2023-JC-QN-0676), Research Foundation of Education Bureau of Shaanxi Provincial (21JK0632), Key Research and Development Plan Project of Science and Technology Bureau of Weinan (2022ZDYFJH-123)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    光电导天线阵列作为太赫兹辐射的重要发射器件,传统天线因固定偏振状态而限制了其应用的灵活性。针对这一问题,设计并研究了一种偏振可调的四元太赫兹砷化镓光电导天线阵列,旨在增强其在应用中的多功能性和适用性。该天线阵列通过精细控制阵元的激励方式,采用同相不等幅激励和90°相差激励两种方式,实现线偏振和圆偏振太赫兹波的精确调控。结果表明,采用同相不等幅激励时,实现了线偏振太赫兹波在360°范围内的灵活调控;采用90°相差激励时,产生了圆偏振太赫兹波,其阻抗带宽范围为0.057 ~ 1.013 THz,相对带宽为178.69%;轴比带宽范围为0.815 ~ 0.947 THz,相对带宽为14.98%。

    Abstract:

    As an important emitter for terahertz radiation, photoconductive antenna arrays are limited in their application flexibility due to the fixed polarization state of traditional antennas. In response to this issue, we have designed and studied a polarization-adjustable four-element terahertz gallium arsenide photoconductive antenna array, aiming to enhance its versatility and applicability in various applications. By precisely controlling the excitation of each element, the antenna array can achieve precise control of linearly and circularly polarized terahertz waves through in-phase unequal amplitude excitation and phase difference excitation. The results show that with in-phase unequal amplitude excitation, flexible control of linearly polarized terahertz waves within a 360-degree range can be achieved. With a 90-degree phase difference excitation, circularly polarized terahertz waves are generated, with a -10 dB impedance bandwidth range of 0.057 THz to 1.013 THz and a relative bandwidth of 178.69%. The axial ratio bandwidth range is 0.815 THz to 0.947 THz, with a relative bandwidth of 14.98%.

    参考文献
    [1] Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Nature Materials, 2002, 1(1): 26-33.
    [2] Lee Y S. Principles of terahertz science and technology [M]. New York: Springer Science & Business Media, 2009.
    [3] Dai J M, Liu J L, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183-190.
    [4] Plusquellic D F, Siegrist K, Heilweil E J, et al. Applications of terahertz spectroscopy in biosystems [J]. ChemPhysChem, 2007, 8(17): 2412-2431.
    [5] Fitch M J, Leahy-Hoppa M R, Ott E W, et al. Molecular absorption cross-section and absolute absorptivity in the THz frequency range for the explosives TNT, RDX, HMX, and PETN [J]. Chemical Physics Letters, 2007, 443(4-6): 284-288
    [6] You C W, Lu C, Wang T Y, et al. Method for defect contour extraction in terahertz non-destructive testing conducted with a raster-scan THz imaging system [J]. Applied Optics, 2018, 57(17): 4884-4889.
    [7] Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Nature Materials, 2002, 1(1): 26-33.
    [8] Akyildiz I F, Han C, Hu Z, et al. Terahertz band communication: An old problem revisited and research directions for the next decade [J]. IEEE Transactions on Communications, 2022, 70(6): 4250-4285.
    [9] Darrow J T, Zhang X C, Auston D H. Power scaling of large‐aperture photoconducting antennas [J]. Applied Physics Letters, 1991, 58(1): 25-27.
    [10] Ma C, Yang L, Dong C, et al. An experimental study on LT-GaAs photoconductive antenna breakdown mechanism [J]. IEEE Transactions on Electron Devices, 2018, 65(3): 1043-1047.
    [11] Zhang Z Z, Fu Z L, Wang C, et al. Research on terahertz quantum well photodetector [J]. Journal of Infrared and Millimeter Waves, 2022, 41(01): 103-109.张真真, 符张龙, 王长, 等.太赫兹量子阱探测器研究进展[J].红外与毫米波学报, 2022, 41(01): 103-109. 10.11972/j.issn.1001-9014.2022.01.006
    [12] Bulgarevich D S, Watanabe M, Shiwa M, et al. Polarization-variable emitter for terahertz time-domain spectroscopy[J]. Optics Express, 2016, 24(24): 27160-27165.
    [13] Mosley C D W, Staniforth M. Scalable interdigitated photoconductive emitters for the electrical modulation of Terahertz beams with arbitrary linear polarization [J]. AIP Advances, 9, 0405323 (2019).
    [14] Warmowska D, Abdalmalak K A, Mu?oz L E G, et al. High-gain, circularly-polarized THz antenna with proper modeling of structures with thin metallic walls [J]. IEEE Access, 2020, 8: 125223-125233.
    [15] Shang T, Jin Z, Li C H, et al. Influence of inductance of photo-conductive terahertz source circuit on its radiation characteristics [J]. Journal of Infrared and Millimeter Waves, 2022, 41(4): 751-755.尚婷, 金枝, 李春晖, 等. 光电导太赫兹源回路电感对其辐射特性的影响[J]. 红外与毫米波学报, 2022, 41(4): 751-755.
    [16] Bundel P, Wu G B, Chen B J, et al. Wideband circular polarizer for a photoconductive antenna[J]. Optics Letters, 2023, 48(12): 3223-3226.
    [17] Bai, J, Chen, T, Wang, Set al. Ultra-broadband and high-efficiency terahertz reflective metamaterials polarization converter [J]. Appl. Phys. A, 2023,129(9): 610.
    [18] Shi W, Jin Z, Zhang L, et al. A photoconductive terahertz radiation source generating terahertz waves with arbitrary polarization direction [J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811022.施卫, 金枝, 张磊, 等. 可产生任意偏振方向太赫兹波的光电导太赫兹辐射源[J]. 激光与光电子学进展, 2023, 60(18): 1811022. 10.3788/LOP231534
    [19] Li H Y, Zhou S M, Li J, et al. Analysis of the Drude model in metallic films [J]. Applied Optics, 2001, 40(34): 6307-6311.
    [20] Huggard P G, Cluff J A, Moore G P, et al. Drude conductivity of highly doped GaAs at terahertz frequencies [J]. Journal of Applied Physics, 2000, 87(5): 2382-2385.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董陈岗,施卫,韩小卫,王志全,王欣,张修兴.偏振可调的太赫兹砷化镓光电导天线阵列研究[J].红外与毫米波学报,2025,44(2):163~169]. DONG Chen-Gang, SHI Wei, HAN Xiao-Wei, WANG Zhi-Quan, WANG Xin, ZHANG Xiu-Xing. The research on polarization-tunable terahertz GaAs photoconductive antenna array[J]. J. Infrared Millim. Waves,2025,44(2):163~169.]

复制
分享
文章指标
  • 点击次数:71
  • 下载次数: 160
  • HTML阅读次数: 15
  • 引用次数: 0
历史
  • 收稿日期:2024-07-08
  • 最后修改日期:2025-02-13
  • 录用日期:2024-08-25
  • 在线发布日期: 2025-02-08
  • 出版日期: 2025-04-25
文章二维码