基于航迹云提议的高光谱遥感空管监视方法研究
作者:
作者单位:

1.中国科学院上海技术物理研究所 中国科学院空间主动光电技术重点实验室, 上海 200083;2.中国科学院大学, 北京100049;3.北京市遥感信息研究所,北京100011

作者简介:

通讯作者:

中图分类号:

基金项目:


The study of hyperspectral remote sensing air traffic control monitoring based on contrails cloud proposal
Author:
Affiliation:

1.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Beijing Remote Sensing Information Research Institute, Beijing 100011, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高光谱亚像元空中航空器探测时受复杂背景影响而产生的低探测率、高虚警率问题,提出一种基于航迹云提议的高光谱遥感图像空中航空器探测方法。首先,基于高光谱语义分割模型搜索航迹云,并利用航迹云提议航空器像元区域,减少无效搜索范围,抑制虚警;其次,提出一种基于字典学习和半盲非负矩阵分解的端元提取算法,有效提升混合像元航空器端元提取精度;最后,在国产高分五号高光谱遥感卫星图像数据集上开展实验验证,结果表明本文提出的算法能够在复杂场景下有效抑制虚警,显著提高亚像元空中航空器的探测率和探测精度。

    Abstract:

    To address the issues of low detection rate and high false alarm rate caused by complex background during sub-pixel aerial aircraft detection in hyperspectral remote sensing image, an aerial aircraft detection method was proposed based on contrails cloud proposal. Firstly, a hyperspectral semantic segmentation model was used to search for the contrails cloud, and ROIs of aircraft were proposed to reduce invalid search ranges and suppress false alarms based on the contrails cloud; Secondly, an endmember extraction algorithm based on dictionary learning and semi-blind non-negative matrix factorization was proposed to improve the accuracy of aircraft endmember extraction for hyperspectral subpixels; Finally, verification experiments were carried out on the hyperspectral remote sensing image dataset of gaofen-5 satellite, and the results demonstrated that the algorithm proposed in this paper can effectively suppress false alarms in complex scenes, and significantly improve the detection rate and detection accuracy of sub-pixel aerial vehicles.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-29
  • 最后修改日期:2024-10-09
  • 录用日期:2024-08-25
  • 在线发布日期: 2024-09-27
  • 出版日期:
文章二维码