基于多光谱机载激光雷达的城市树种分类研究
CSTR:
作者:
作者单位:

1.芬兰地理空间研究所 遥感和摄影测量部,埃斯波,02150,芬兰;2.赫尔辛基大学 森林科学系,赫尔辛基,00014,芬兰;3.先进激光技术安徽省实验室,安徽 合肥230037

作者简介:

通讯作者:

中图分类号:

S771.8

基金项目:


Urban tree species classification based on multispectral airborne LiDAR
Author:
Affiliation:

1.Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Espoo 02150, Finland;2.Department of Forest Sciences, University of Helsinki, Helsinki 00014, Finland;3.Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    城市树种可为城市提供各种基本的生态系统服务,如调节城市温度、隔离噪音、固定碳以及减轻城市热岛效应。这些服务的质量受到物种多样性、树木生长状况以及树木分布和组成的影响。传统上,有关城市树木的数据都是通过实地数据收集和人工解读遥感图像收集的。在这项研究中,我们评估了使用多光谱机载激光扫描(ALS)数据对芬兰Espoo市24种常见城市路边树种进行分类的能力。利用树冠结构信息、强度特征和光谱信息进行分类。使用了 8 种不同的机器学习分类算法,其中 Extra Tree (ET) 的性能最佳,其使用多光谱激光雷达数据的总体准确率为 71.7%,这表明在集成一体的高光谱激光雷达中扫描结合结构和光谱信息可以提高分类准确率。未来,我们的重点将是确定物种分类中最重要的特征,并找到效率更高、准确率更高的算法。

    Abstract:

    Urban tree species provide various essential ecosystem services in cities, such as regulating urban temperatures, reducing noise, capturing carbon, and mitigating the urban heat island effect. The quality of these services is influenced by species diversity, tree health, and the distribution and composition of trees. Traditionally, data on urban trees has been collected through field surveys and manual interpretation of remote sensing images. In this study, we evaluated the effectiveness of multispectral airborne laser scanning (ALS) data in classifying 24 common urban roadside tree species in Espoo, Finland. Tree crown structure information, intensity features, and spectral data were used for classification. Eight different machine learning algorithms were tested, with the extra trees (ET) algorithm performing the best, achieving an overall accuracy of 71.7% using multispectral LiDAR data. This result highlights that integrating structural and spectral information within a single framework can improve classification accuracy. Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

胡佩纶,陈育伟,IMANGHOLILOO Mohammad, HOLOPAINEN Markus,王一程,HYYPP? Juha.基于多光谱机载激光雷达的城市树种分类研究[J].红外与毫米波学报,2025,44(2):197~202]. HU Pei-Lun, CHEN Yu-Wei, IMANGHOLILOO Mohammad, HOLOPAINEN Markus, WANG Yi-Cheng, HYYPP? Juha. Urban tree species classification based on multispectral airborne LiDAR[J]. J. Infrared Millim. Waves,2025,44(2):197~202.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-26
  • 最后修改日期:2025-02-16
  • 录用日期:2024-09-09
  • 在线发布日期: 2025-02-08
  • 出版日期: 2025-04-25
文章二维码