基于多光谱机载激光雷达的城市树种分类研究
作者:
作者单位:

1.a芬兰地理空间研究所遥感和摄影测量部,埃斯波,02150,芬兰;2.b赫尔辛基大学森林科学系,赫尔辛基,00014,芬兰,先进激光技术安徽省实验室, 合肥,230037,中国),(, 合肥,230037,中国

作者简介:

通讯作者:

中图分类号:

基金项目:


Urban Tree Species Classification with Multispectral Airborne LiDAR
Author:
Affiliation:

1.aDepartment of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Espoo, 02150, Finland;2.bDepartment of Forest Sciences, University of Helsinki, Helsinki, 00014, Finland

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    城市树种可为城市提供各种基本的生态系统服务,如调节城市温度、隔离噪音、固定碳以及减轻城市热岛效应。这些服务的质量受到物种多样性、树木生长状况以及树木分布和组成的影响。传统上,有关城市树木的数据都是通过实地数据收集和人工解读遥感图像收集的。在这项研究中,我们评估了使用多光谱机载激光扫描(ALS)数据对芬兰Espoo市24种常见城市路边树种进行分类的能力。我们利用树冠结构信息、强度特征和光谱信息进行分类。我们在研究中使用了 8 种不同的机器学习分类算法,其中 Extra Tree (ET) 的性能最佳,其使用多光谱激光雷达数据的总体准确率为 71.7%,这表明在集成一体的高光谱激光雷达中扫描结合结构和光谱信息可以提高分类准确率。未来,我们的重点将是确定物种分类中最重要的特征,并找到效率更高、准确率更高的算法。

    Abstract:

    Urban tree species provide various essential ecosystem services in cities, such as mediating urban temperature, isolating noise, fixing carbon, and mitigating the urban heat island impact. The quality of these services is influenced by species diversity, tree growth status, and the distribution and composition of trees. Traditionally, data about urban trees has been gathered through field data collection and manual interpretation of remote sensing images. In this study, we evaluate the capacity of using Multispectral Airborne Laser Scanning (ALS) data to classify 24 common urban roadside tree species in Espoo, Finland. We utilized tree crown structure information, intensity features, and spectral information for classification. 8 different machine learning algorithms were used in our study and Extra trees (ET) performed best with an overall accuracy of 71.7% using multispectral LiDAR data, highlighting that combining structural and spectral information in a single frame could enhance classification accuracy. In the future, we will focus on identifying the most important features in species classification and finding algorithms with higher efficiency and accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-26
  • 最后修改日期:2024-09-09
  • 录用日期:2024-09-09
  • 在线发布日期: 2024-12-05
  • 出版日期:
文章二维码