基于张量奇异值部分和与方向残差加权的红外小目标检测算法
作者:
作者单位:

1.南京邮电大学 自动化学院、人工智能学院,江苏 南京210023;2.南京理工大学 电子工程与光电技术学院,江苏 南京210094;3.兰州空间技术物理研究所 空间环境与物质作用全国重点实验室,甘肃 兰州730030

作者简介:

通讯作者:

中图分类号:

基金项目:


Infrared small target detection algorithm via Partial Sum of the Tensor Nuclear Norm and direction residual weighting
Author:
Affiliation:

1.College of Artificial Intelligence and Automation, Nanjing University Posts and Telecommunications, Nanjing210023, China;2.College of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing210094, China;3.National Key Laboratory of Space Environment and Matter, Lanzhou Institute of Physics, Lanzhou730030, China

Fund Project:

Supported by Key Laboratory Fund for Equipment Pre-Research (6142207210202);

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对红外弱小目标检测在复杂云背景下面临的背景与目标对比度低、噪声抑制能力不足等问题,提出了一种基于张量核规范和方向残差加权的红外小目标检测方法。在将红外图像转换为红外块张量模型的基础上,从背景张量的低秩特性出发,利用背景与目标在不同方向上的对比度差异,设计了一种基于方向残差加权的双邻域局部对比度方法(double-neighborhood local contrast based on direction residual weighting method, DNLCDRW),并结合张量核范数部分和方法(partial sum of tensor nuclear norm, PSTNN),实现了对红外小目标的有效背景抑制和恢复。实验表明该算法能有效抑制背景,提高对目标的检测能力。

    Abstract:

    Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background, an infrared small target detection method based on the tensor nuclear norm and direction residual weighting is proposed. Based on converting the infrared image into an infrared patch tensor model, from the perspective of the low-rank nature of the background tensor, and taking advantage of the difference in contrast between the background and the target in different directions, we design a double-neighborhood local contrast based on direction residual weighting method (DNLCDRW) combined with the partial sum of tensor nuclear norm (PSTNN) to achieve effective background suppression and recovery of infrared small targets. Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-25
  • 最后修改日期:2024-10-02
  • 录用日期:2024-07-26
  • 在线发布日期: 2024-09-27
  • 出版日期:
文章二维码