基于非凸低秩塔克分解的红外小目标检测方法
CSTR:
作者:
作者单位:

1.国防科技大学 电子科学学院,湖南 长沙,410073;2.湘潭大学 自动化与电子信息学院,湖南 湘潭,411100

作者简介:

通讯作者:

中图分类号:

TP753

基金项目:

国家自然科学基金(61921001); 湖南省杰出青年基金(2024JJ2063); 博士后面上基金(GZB20230982); 博士后资助计划(2023M744321);国家自然科学基金青年科学基金(62101567)


Infrared small target detection method based on nonconvex low-rank Tuck decomposition
Author:
Affiliation:

1.College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China;2.College of Automation and Electronic Information, Xiangtan University, Xiangtan 411100, China

Fund Project:

Supported by the National Natural Science Foundation of China (61921001), Outstanding Youth Foundation in Hunan Province (2024JJ2063), Postdoctoral Fellowship Program of CPSF under Grant Number (GZB20230982),China Postdoctoral Science Foundation(2023M744321), Youth Fund of the National Natural Science Foundation of China (62101567)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    低秩稀疏分解方法因其好的检测性能在红外小目标检测领域受到广泛关注。然而,现有低秩稀疏分解方法在复杂场景中仍然面临检测性能不高、检测速度较慢等问题。虽然现有的低秩塔克分解方法在复杂场景下取得了令人满意的检测性能,但基于低秩塔克分解的方法需要根据经验提前定义秩,预估的秩过大或者过小会导致漏检或虚警。而且,不同场景中秩的大小不一样,这不适用于实际场景。为了解决这一问题,本文采用非凸秩接近范数约束低秩塔克分解的潜在因子,这避免了根据经验提前设置秩,提高了算法在不同场景中的鲁棒性。同时,设计了基于对称高斯-赛德尔的交替方向乘子法(symmetric GaussSeidel based alternating direction method of multipliers algorithm,sGSADMM)来求解所提模型。与现有基于交替方法乘子法不同的是,sGSADMM算法可以利用更多的结构信息来获得更高的精度。大量的实验结果表明,该方法与其他先进算法在检测性能和背景抑制等方面具有优越性。

    Abstract:

    Low-rank and sparse decomposition method (LRSD) has been widely concerned in the field of infrared small target detection because of its good detection performance. However, existing LRSD-based methods still face the problems of low detection performance and slow detection speed in complex scenes. Although existing low-rank Tuck decomposition methods have achieved satisfactory detection performance in complex scenes, they need to define ranks in advance according to experience, and estimating the ranks too large or too small will lead to missed detection or false alarms. Meanwhile, the size of rank is different in different scenes. This means that they are not suitable for real-world scenes. To solve this problem, this paper uses non-convex rank approach norm to constrain latent factors of low-rank Tucker decomposition, which avoids setting ranks in advance according to experience and improves the robustness of the algorithm in different scenes. Meanwhile, a symmetric GaussSeidel (sGS) based alternating direction method of multipliers algorithm (sGSADMM) is designed to solve the proposed method. Different from ADMM, the sGSADMM algorithm can use more structural information to obtain higher accuracy. Extensive experiment results show that the proposed method is superior to the other advanced algorithms in detection performance and background suppression.

    参考文献
    相似文献
    引证文献
引用本文

杨俊刚,刘婷,刘永贤,李博扬,王应谦,盛卫东,安玮.基于非凸低秩塔克分解的红外小目标检测方法[J].红外与毫米波学报,2025,44(2):297~311]. YANG Jun-Gang, LIU Ting, LIU Yong-Xian, LI Bo-Yang, WANG Ying-Qian, SHENG Wei-Dong, AN Wei. Infrared small target detection method based on nonconvex low-rank Tuck decomposition[J]. J. Infrared Millim. Waves,2025,44(2):297~311.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-12
  • 最后修改日期:2025-02-11
  • 录用日期:2024-08-28
  • 在线发布日期: 2025-02-08
  • 出版日期: 2025-04-25
文章二维码