红外图像暗弱目标轻量级检测网络
DOI:
作者:
作者单位:

1.国防科技大学电子科学学院;2.空军航空大学

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省研究生科研创新项目(QL20230012);国防科技大学自主创新科学基金项目(22–ZZCX-042);国家自然科学基金创新群体项目(61921001)


A lightweight dark object detection network on infrared images
Author:
Affiliation:

1.College of Electronic Science and Technology, National University of Defense Technology;2.Aviation University of Air Force

Fund Project:

The Hunan Provincial Innovation Foundation For Postgraduate (QL20230012); The Science Technology Innovation Program of National Defense University (22-ZZCX-042); Innovative Research Groups of the National Natural Science Foundation of China (61921001)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    弱小目标检测一直是红外图像处理领域的经典问题,通常所关注的弱小目标在亮度上高于所在的局部背景。然而在一些场景下,目标亮度会弱于背景,如在高空中巡航的民航飞机,由于机身蒙皮温度低于地表,在中等空间分辨率的热红外卫星图像上呈现为暗弱点目标。针对暗弱目标形态特征少、现有目标检测网络结构冗余的问题,本文提出了一种基于可形变注意力机制的极轻量级暗弱目标单帧检测网络AirFormer,参数量仅为37.1K,在256256尺寸的图像上浮点运算次数仅有46.2M。此外,针对当前红外图像暗弱目标检测数据集缺乏的问题,本文通过对热红外卫星图像民航飞机的特性进行分析,提出了一种中等空间分辨率热红外卫星图像民航飞机的简易仿真方法,并以民航飞机为仿真对象构建了红外图像暗弱目标检测数据集IRAir数据集。在IRAir数据集上进行验证,所提的AirFormer网络对暗弱目标的召回率可达71.0%,检测准确率可达82.6%。此外,基于仿真数据训练,AirFormer可有效检出热红外卫星图像上真实的民航飞机。

    Abstract:

    Small object detection has been a classic problem in the field of infrared image processing, and the objects are usually brighter than the local background they are in. However, in some scenarios, the target brightness may be lower than the background brightness. For example, the civil aircrafts usually has low-temperature skin when cruising, appearing as dark points on medium spatial resolution thermal infrared satellite images. There are few features of these objects, so the current detection network structure has redundancy. Hence, we proposed a lightweight dark object detection network, AirFormer. It only has 37.1K parameters and 46.2M floating-point operations on a 256256 image. Considering the lack of infrared dark object detection dataset, we analyzed the characteristics of aircrafts on thermal infrared satellite images, and then developed a simulated flying aircraft detection dataset called IRAir. Our proposed AirFormer achieves 71.0% at recall and 82.6% at detection precision on the IRAir dataset. Based on simulated training data, AirFormer achieves detection of real flying aircrafts on the thermal infrared satellite images.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-08
  • 最后修改日期:2024-07-12
  • 录用日期:2024-07-16
  • 在线发布日期:
  • 出版日期:
文章二维码