基于交叉相关网络的少样本红外空中目标分类方法
作者:
作者单位:

1.中国科学院红外探测与成像技术重点实验室,上海 200083;2.中国科学院大学,北京 100049;3.中国科学院上海技术物理研究所,上海 200083

作者简介:

通讯作者:

中图分类号:

基金项目:

国家十四五预研基金(项目编号514010405)


Infrared aircraft few-shot classification method based on cross-correlation network
Author:
Affiliation:

1.Key Laboratory of Infrared System Detection and Imaging Technology,Chinese Academy of Sciences,Shanghai 200083,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;3.Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China

Fund Project:

Supported by the National Pre-research Program during the 14th Five-Year Plan(514010405).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对红外空中目标样本匮乏、传统深度学习易产生过拟合等问题,提出一种基于交叉相关网络的少样本红外目标分类方法。该方法结合简单无参数自注意力和交叉注意力两个核心模块,通过分析支持图像和查询图像之间的自相关性和互相关性,实现少样本条件下红外目标的有效分类。所提出的交叉相关网络结合了这两个模块,以端到端的方式进行训练。其中,简单无参数自注意力负责提取图像内部结构,交叉注意力可以计算图像之间的互相关,进一步提取并融合图像之间的特征。与现有的小样本红外目标分类模型相比,该模型通过建模支持集和查询集之间特征的语义相关性,聚焦红外图像的几何结构和纹理信息,从而更好地关注目标对象。实验结果表明,该方法在各项分类任务中性能均优于现有的红外空中目标分类方法,且分类准确率最高提升超过3%。此外,消融实验和对比实验也证明了方法的有效性。

    Abstract:

    In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit, a few-shot infrared aircraft classification method based on cross-correlation networks is proposed. This method combines two core modules: a simple parameter-free self-attention and cross-attention. By analyzing the self-correlation and cross-correlation between support images and query images, it achieves effective classification of infrared aircraft under few-shot conditions. The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner. The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images. Compared with existing few-shot infrared target classification models, this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set, thus better attending to the target objects. Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks, with the highest classification accuracy improvement exceeding 3%. In addition, ablation experiments and comparative experiments also prove the effectiveness of the method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-29
  • 最后修改日期:2024-10-03
  • 录用日期:2024-06-07
  • 在线发布日期: 2024-09-26
  • 出版日期:
文章二维码