DIFNet:基于域不变特征的合成孔径雷达干扰抑制网络
作者:
作者单位:

1.国防科技大学 电子科学学院,湖南 长沙 410073;2.中国科学院大学,北京 100049;3.国科大杭州高等研究院 物理与光电工程学院,浙江 杭州 310024

作者简介:

通讯作者:

中图分类号:

O441

基金项目:


DIFNet: SAR RFI suppression network based on domain invariant features
Author:
Affiliation:

1.School of Electronic Science, National University of Defense Technology, Changsha 410073, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.School of physics and optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

Fund Project:

Supported by the National Natural Science Foundation of China (62001489)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    合成孔径雷达(synthetic aperture radar,SAR)是一种高分辨率的二维成像雷达,但在成像过程中,合成孔径雷达易受到有意和无意的干扰,导致图像质量的严重下降,其中最常见是射频干扰。为了解决上述问题,众多算法被提出,虽然图像修复已经取得了优秀的结果,但是其泛化能力未知,在跨传感器实验中它是否仍然有效需要进一步验证。通过在时频域上对干扰信号分析,本工作发现射频干扰在不同传感器之间具有域不变的特征。因此,本工作重构了损失函数,并提取域不变特征,以改善网络的泛化能力。最终,本工作提出了一种基于域不变特征的合成孔径雷达射频干扰抑制方法,并将射频抑制网络嵌入到合成孔径雷达的成像过程中。所提方法与传统的陷波滤波方法相比,不仅能够消除干扰,还能有效保留强散射目标。同时与PISNet相比,所提方法可以提取域不变特征,具有更好的泛化能力,即使在跨传感器实验中,仍然可以取得优秀的结果。在跨传感器实验中,训练数据和测试数据来自不同的雷达平台,具备不同的雷达参数,因此,跨传感器实验可以为模型的泛化能力提供证明。

    Abstract:

    Synthetic aperture radar (SAR) is a high-resolution two-dimensional imaging radar. However, during the imaging process, SAR is susceptible to intentional and unintentional interference, with radio frequency interference (RFI) being the most common type, leading to a severe degradation in image quality. To address the above problem, numerous algorithms have been proposed. Although inpainting networks have achieved excellent results, their generalization is unclear. Whether they still work effectively in cross-sensor experiments needs further verification. Through the time-frequency analysis to interference signals, this work finds that interference holds domain invariant features between different sensors. Therefore, this work reconstructs the loss function and extracts the domain invariant features to improve its generalization. Ultimately, this work proposes a SAR RFI suppression method based on domain invariant features, and embeds the RFI suppression into SAR imaging process. Compared to traditional notch filtering methods, the proposed approach not only removes interference but also effectively preserves strong scattering targets. Compared to PISNet, our method can extract domain invariant features and hold better generalization ability, and even in the cross-sensor experiments, our method can still achieve excellent results. In cross-sensor experiments, training data and testing data come from different radar platforms with different parameters, so cross-sensor experiments can provide evidence for the generalization.

    参考文献
    相似文献
    引证文献
引用本文

吕文浩,方付平,田元荣. DIFNet:基于域不变特征的合成孔径雷达干扰抑制网络[J].红外与毫米波学报,2024,43(6):775~783]. LYU Wen-Hao, FANG Fu-Ping, TIAN Yuan-Rong. DIFNet: SAR RFI suppression network based on domain invariant features[J]. J. Infrared Millim. Waves,2024,43(6):775~783.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-26
  • 最后修改日期:2024-11-13
  • 录用日期:2024-06-26
  • 在线发布日期: 2024-11-06
  • 出版日期:
文章二维码